Металлизированный водород. Прорыв в физике? Твёрдый металлический водород, возможно, стал реальностью. Погружаясь в Юпитер

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 27 мая 2017; проверки требуют.

Металли́ческий водоро́д - совокупность фазовых состояний водорода , находящегося при крайне высоком давлении и претерпевшего фазовый переход . Металлический водород представляет собой вырожденное состояние вещества и, по некоторым предположениям, может обладать некоторыми специфическими свойствами - высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.

В 1930-х годах британский ученый Джон Бернал предположил, что атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов, может оказаться стабильным при высоких давлениях . В 1935 году Юджин Вигнер и X. Б. Хантингтон провели соответствующие расчёты. Гипотеза Бернала нашла подтверждение - согласно полученным расчётам, молекулярный водород переходит в атомарную металлическую фазу при давлении около 250 тыс. атмосфер (25 ГПа) со значительным увеличением плотности . В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведётся теоретически. Попытки получения, начатые в 1970-х годах, привели к возможным эпизодам водорода в 1996, 2008 и 2011 году, пока, наконец, в 2017 году профессор Айзек Сильвера и его коллега Ранга Диас не добились получения стабильного образца при давлении 5 млн атмосфер , однако камера, где хранился образец, под давлением разрушилась, и образец был потерян.

Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов - Юпитера, Сатурна - и крупных экзопланет . Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода.

При увеличении внешнего давления до десятков ГПа коллектив атомов водорода начинает проявлять металлические свойства. Ядра водорода (протоны) сближаются друг с другом существенно ближе боровского радиуса , на расстояние, сравнимое с длиной волны де Бройля электронов. Таким образом, сила связи электрона с ядром становится нелокализованной, электроны слабо связываются с протонами и формируют свободный электронный газ так же, как в металлах.

Жидкая фаза металлического водорода отличается от твердой фазы отсутствием дальнего порядка . Имеется дискуссия о допустимом диапазоне существования жидкого металлического водорода. В отличие от гелия-4 , жидкого при температуре ниже 4,2 и нормальном давлении благодаря нулевой энергии нулевых колебаний , массив плотно упакованных протонов обладает значительной энергией нулевых колебаний. Соответственно, переход от кристаллической фазы к неупорядоченной ожидается при ещё более высоких давлениях. Исследование, проведенное Н. Ашкрофтом, допускает область жидкого металлического водорода при давлении около 400 ГПа и низких температурах . В других работах Е. Бабаев предполагает, что металлический водород может представлять собой металлическую сверхтекучую жидкость .

В 2011 году было сообщено о наблюдении жидкой металлической фазы водорода и дейтерия при статическом давлении 260-300 ГПа. , что вновь вызвало вопросы в научном сообществе .

Научное сообщество скептически отнеслось к данной новости , ожидая повторного эксперимента .

Метастабильные соединения металлического водорода перспективны как компактное, эффективное и чистое топливо. При переходе металлического водорода в обычную молекулярную фазу высвобождается в 20 раз больше энергии, чем при сжигании смеси кислорода и водорода - 216 МДж/кг

Водородная энергетика, технологический прогресс и экологическая безопасность в отрасли черной металлургии.
Прямое восстановление оксида железа водородом.

Метод прямого восстановления железа водородом в наши дни, как технологический процесс, остался без изменения – специально подготовленная, то есть обогащенная, руда, - концентрат, где содержится основной окисел железа восстанавливается в шахтной печи с помощью твердого топлива, как это было в древности, или для этой цели используется конвертированный газ – природный метан, но преобразованный в смесь водорода и угарного газа (СО).

3Fe2O3+H2= 2Fe3O4+H 20
Fe3O4+H2=3FeO+H 2O
FeO+H2=Fe+H 2O

Как установлено в настоящее время, можно восстанавливать концентраты руды, которые еще не превращены в окатыши. Более того, оказалось, что концентрат восстанавливается даже с большей скоростью, чем изготовленные из него окатыши. Однако на пути к реализации этого процесса стоят трудности чисто технологического характера.

Наиболее интересным способом восстановления оксида железа, является возможность использования водорода в режиме горения. Сам процесс восстановления пойдет достаточно быстро, более того, при этом не возникает лишних примесей: продукт восстановления – железо и вода. Однако получение и хранение водорода сопряжено со множеством чисто технических и экономических трудностей. Поэтому водород пока что используют лишь для получения металлических порошков.

Существует технология среднетемпературного восстановления оксида железа, когда протекает процесс горения и прямого воздействия водорода при температуре 470-8100С. Восстановитель – водород или в чистом виде, или с примесью окиси углерода. Железо, естественно, находится в твердом состоянии, образуя при восстановлении своеобразную губку.

Анализ приведенных выше данных дает основания для следующих выводов:

    Среди реакций восстановления оксидов железа водородом только реакция (1.1) является экзотермической. С ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этой реакции будет уменьшаться;

    Реакции (1.4), (1.7), (1.10) являются эндотермическими. Поэтому с ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этих реакций будет увеличиваться.

Влияние температуры на изменение состава равновесной газовой фазы для каждой из реакций восстановления оксидов железа водородом показано на рисунке 1 пунктирными линиями.

Следует обратить внимание на то, что кривые, характеризующие составы равновесных газовых смесей для реакций восстановления оксидов железа оксидом углерода и водородом, пересекаются при температуре 8100С. Из анализа реакции водяного газа известно, что при соблюдении условия

Оксид углерода и водород при этой температуре обладают одинаковым химическим сродством к кислороду.

При температурах выше 8100 С водород обладает большим химическим сродством к кислороду. Поэтому при восстановлении оксидов железа водородом объемное содержание восстановителя в газовой фазе может быть меньше, чем при восстановлении оксидом углерода.

При температурах ниже 8100 С более высоким химическим сродством к кислороду обладает оксид углерода.

Конечным продуктом везде являются железо, вода и углекислый газ, причем воду можно снова использовать для получения водорода и кислорода. Таким образом появляются реальные возможности осуществить замкнутый цикл восстановления железа водородом и создать безотходное производство.

Однако до сих пор водород получают двумя испытанными методами – гидролизом воды и ее электролитическим разложением, проще говоря, электролизом. Существует, правда, химическое разложение, более выгодное, но оно не столь распространено, на что имеется ряд чисто технических причин. Поиск новых способов продолжается, ибо важность проблемы несомненна.

Использование водорода для нужд черной металлургии – реальность сегодняшнего дня, и это возможно с применением водородных турбогенераторных установок, созданных на основе научного открытия НППСО «Грантстрой» авторами Аракелян Г.Г., Аракелян А.Г., Аракелян Гр.Г. – ранее неизвестного явления двухстадийного высокотемпературного окисления углеводородов водой (диплом № 425) и изобретения «Способ получения водородсодержащего газа в турбогенераторной установке» (патенты № 117145 от 20 июня 2012 г., № 2269486 от 10 февраля 2006 г., № 2478688 от 10 апреля 2013 г.).

Впервые в мировой практике при проведении научных и опытно – конструкторских работ при испытании водородной турбогенераторной установки нового поколения в соответствии с патентом на изобретение № 2678688, учеными ЗАО НППСО «Грантстрой» было выявлено уникальное новое явление – восстановление окиси железа водородом.

Данное обстоятельство не входило в план и программу лабораторных работ по изучению получения водорода в турбогенераторной установке. При анализе газов, выходящих из водородной турбогенераторной установки, научными работниками была использована промежуточная горизонтальная газоотводящая труба диаметром 279 мм, толщиной стенки 8 мм и длиной 2500 мм, полностью покрытая окисью железа с наружной и внутренней сторон, находившейся около 10 лет под воздействием окружающей среды (осадки и т.д.) (рис.2)

Рис. 2. Начало проведения лабораторных исследований.

Задачами, поставленными перед учеными в данный период испытаний, являлись определение температуры горения водорода на выходе газоотводящей трубы при помощи термопара ТП (предел определения температуры до 1500оС) и анализ газов с применение прибора «Тесто-300». Время проведения эксперимента составило около 35 минут. За этот период было обнаружено, что воздействие водорода при температуре горения 900оС на используемую в данном опыте газоотводящую трубу способствовало процессу восстановления окиси железа в внутренней стороны на 100% по всей толщине и частично с наружной стороны за счет воздействия горючего водорода, который выходил в ограниченном количестве. (рис.3)

Рис. 3. Восстановление окиси железа водородом.

Достоверные факты, опытно-экспериментальные исследования и как показано на Рис.1, что кривые 5, 5а и реакция восстановления оксида железа пересекаются при температуре горения водорода 9000С – все это даёт полное основание заявить о возможности применения водородных турбогенераторных установок в металлургии для восстановления оксида железа водородом с фантастически низкой себестоимостью, что открывает возможность приступить к переработке отходов на рудниках в виде оксида железа, объем которых во всем мире составляет около 1 трлн.250 млрд. тонн, и которые нарушают экологическую стабильность в регионах, активно добывающих и перерабатывающих железную руду.

Предварительные расчеты и первые эксперименты показали: возможность получать водород с такой низкой себестоимостью, что «водородная металлургия» обретет, наконец, надежную экономическую основу с учетом полной экологической безопасности водородного восстановления оксида железа.

Как видно, существует необходимость введения в металлургию прямое водородное восстановление оксида железа, обеспечивающее безотходное производство в черной металлургии.

Прямое водородное восстановление оксида железа – только начало технологического прогресса в черной металлургии. Но и остальные звенья – будь то конвертеры, электропечи, заводы-автоматы, аппараты малооперационной технологии – требуют хорошего исходного сырья. Им будет восстановленный водородом оксид железа.

Металлургию будущего не без основания часто называют водородной. В настоящее время водород обходится дорого. Его получение, хранение и транспортировка сопряжены со множеством чисто технических проблем. Однако произведенные эксперименты и предварительные расчеты показывают, что можно получать водород с такой низкой себестоимостью, используя изобретение ЗАО НППСО «Грантстрой», что «водородная металлургия» обретет надежную экономическую основу. А если учесть полную экологическую безопасность водородных турбогенераторных установок, то сомнение в том, что именно они предопределяют будущее металлургии, открывающее огромные возможности в современном мире.

(В данной статье в том числе использованы материалы с веб сайтов и учебных пособий)

Доктор наук, заслуженный
рационализатор-изобретатель РФ,
заслуженный строитель России Г.Г. Аракелян

Экология потребления.Наука и техника: Новый материал может совершить революцию в ракетостроении и сверхпроводниковой отрасли, однако пока он получен лишь в очень малом количестве.

Исследователи из Гарвардского университета (США) впервые смогли получить в лаборатории металлический водород при низких температурах. Для этого им пришлось создать давление, выше, чем в центре Земли. Хотя металлический водород был предсказан почти столетие тому назад, исключительные трудности на пути получения этого материала долгое время делали его получение в твердой форме недостижимой мечтой.

Теоретики ещё в первой половине XX века показали, что обычный водород, существующий в виде двухатомных молекул, при росте давления постепенно потеряет молекулярную структуру. Его молекулы просто развалятся, образовав гораздо более плотно упакованный атомарный водород в твёрдой фазе.

Этот материал, широко распространённый в недрах Юпитера, обладает рядом уникальных свойств, которые делают его крайне многообещающим. По расчётам, он должен быть хорошим проводником - возможно, даже сверхпроводником. А, например, при плавлении металлического водорода должно выделяться в 21 раз больше энергии, чем при сжигании килограмма того же водорода в кислороде. В теории это делает его отличным ракетным топливом, на базе которого можно строить одноступенчатые ракеты и выводить в космос большую полезную нагрузку на ракете умеренных размеров.

Но, чтобы сделать всё это, нужно сперва получить такой водород. На протяжении длительного времени создать нужное для его получения давление удавалось только с помощью алмазных наковален с лазерным нагревом и уплотнением. Температура в таких наковальнях часто измерялась тысячами градусов - даже получив в них металлический водород, исследователи через миллисекунду тут же его теряли. Замерить его металлические свойства при низкой температуре достоверно не удавалось.

В этот раз учёные оптимизировали алмазную наковальню таким образом, чтобы получить металлический водород именно при малых температурах. Наковальня состоит из двух синтетических алмазов конической формы. Чтобы убрать дефекты в алмазах (избежать растрескивания при росте давления), их отполировали алмазной крошкой. Кроме того, их покрыли слоем глинозёма. С его помощью удалось блокировать диффузию водорода при высоких давлениях внутрь алмазов наковальни.

Диффундирующий водород быстро создаёт в алмазах дефекты, делающие их хрупкими, и дальнейшее сжатие водорода приводит к их разрушению. После модификации ячейку с алмазной наковальней использовали для получения металлического водорода при температуре 5,5 кельвина и давлении в 495 гигапаскалей. Это почти в пять миллионов раз выше атмосферного. 5,5 кельвина - рекордно низкая температура для такого давления. Спектроскопический анализ показал, что водород в новом материале находится в атомарном состоянии, а его плотность соответствует металлическому водороду.

Пока водород удалось получить в очень малых количествах, с помощью которых достоверно удалось прояснить лишь наличие у него свойств металла и высокой отражательный способности - он отражал порядка 0,91 от падавшего на него электромагнитного излучения. Однако в будущем исследователи надеются добиться получения достаточно больших количеств этого материала. В значимых количествах он должен быть метастабилен, как алмаз. Это значит, что хотя для его получения и требуется очень большое давление, однажды возникнув металлический водород остается стабильным даже в обычных условиях - при комнатной температуре и атмосферном давлении. Связано это с тем, что энергия, требующаяся для разрушения связей в таком материале столь велика, что в нормальных условиях такой переход не случится.

Ряд работ предсказываю т у металлического водорода сверхпроводимость при комнатной температуре. На сегодня таких сверхпроводников получить ещё не удалось.

Металлический водород при получении требует больших затрат энергии, и при его переходе в фазу газообразного (обычного) водорода эта энергия быстро высвобождается. В случае его применения в ракетных двигателях он может дать удельный импульс в 1700 секунд. Современные лучшие виды ракетного топлива дают цифры в районе 400 секунд. К тому же металлический водород в силу его метастабильности не потребует криогенных баков и не будет быстро утекать через их стенки в космосе (это ограничивает использование жидкого водорода в ракетах). С таким твёрдым топливом в теории можно создать одноступенчатые ракеты большой грузоподъёмности при умеренных затратах. В NASA его рассматривают как фактор, способный резко изменить расстановку сил в космической индустрии. Проверить, так это или нет возможно только на практике - после улучшения существующих методов его наработки. опубликовано

Что мы знаем об окружающем нас мире? Да ничего. Вообще, все окружающие нас материалы подразделяются на три базовых вполне конкретных лагеря. К примеру, для начала возьмем твердый куб воды — лед. После того, как он достигнет определенной температуры, он изо льда превратится в лед. Если продолжить увеличивать температуру, то в конце концов образуется пар.

Иными словами, каждая молекула имеет свою собственную фазовую диаграмму. Эта диаграмма является своеобразной картой того, что стоит ожидать от молекулы в различных условиях, как она себя поведет при изменениях температуры, давления и прочих параметров. Известно, что для каждого элемента диаграмма совершенно уникальна. И все от того, что есть различия в молекулярно-атомной системе. Ведь внутри этой компоновки могут происходить разные процессы.

Интересно другое, когда начинается разговор о водороде, то мы вдруг обнаруживаем, что практически ничего не слышали о его возможностях. Разве что некоторые реакции, связанные с подпиткой этого элемента кислородом. Но даже когда мы берем его в одиночном состоянии, его крайняя «застенчивость» мешает ему взаимодействовать с иными элементами в единственном числе. Дело в том, что водород практически всегда объединяется в молекулу (обычно в виде газа) и только после этого вступает в реакцию.

Если же водород удастся загнать в бутылку и увеличить температуру до тридцати трех кельвинов, что двести сорок градусов по Цельсию, вещество становится жидким. Ну, а при минус четырнадцати — минус двухсот пятидесяти девяти по Цельсию — водород твердеет.

Логически получается, что при повышенной температуре водород должен оставаться газообразным. Но это при условии низкого давления. Если повысить давление при той же высокой температуре, то можно обнаружить очень интересные последствия.

Космическое поведение водорода

Невероятные трансформации водорода происходят в космосе. На Земле их практически невозможно обнаружить. Возьмем, к примеру, Юпитер. И вот тут найденный водород начинает проявлять свои необычные свойства.

Погруженный в глубину под видимую поверхность планеты, привычный водород под высоким давлением начинает уступать место своему собрату — слою газожидкостного сверхкритичного гибрида. То есть условия слишком жаркие, чтобы оставаться в виде жидкости, но при этом слишком высокое давление, чтобы быть газом.

Но это только начало странностей. Если копнуть в более глубокие слои, то можно обнаружить вовсе невероятные превращения вещества. Какое-то время составные части водорода все еще продолжают как бы подпрыгивать. Но при давлении, превышающем земное связи водорода продолжают сжиматься. В результате в области ниже тринадцати тысяч километров под облаками появляется некая хаотичная смесь, в которой присутствую отдельные свободные ядра водорода, которые представляют собой одиночные протоны, смешанные с освобожденными электронами. При высоких температурах и низких давлениях этот состав является плазмой.

Вот только условия Юпитера, предлагающие более высокое давление, провоцирую не образование плазмы, а нечто, похожее на металл. Получается жидкий кристаллический металл.

Ученые пришли к выводу, что ничего странного в металлическом водороде нет. Просто бывают условия, при которых то или иное неметаллическое вещество начинает приобретать свойства металла. Вот только водород — не обычный металл, а урезанный атом — протон. В итоге получается нечто вроде жидкого металла. Протон как бы подвешен в жидкости. И если раньше считалось, что подобное может происходить на карликовых звездах, то сегодня оказалось, что такие свойства вещество может проявлять тут же, по соседству в нашей же системе.

Изображение алмазных наковален, сжимающих образец молекулярного водорода. При высоком давлении водород переходит в атомарное состояние, как показано справа. Источник: Dias & Silvera, 2017

В 1935 году ученые Юджин Вигнер и Бэлл Хантингтон предсказали возможность перевода водорода в металлическое состояние под воздействием огромного давления - 250 тысяч атмосфер. Немного позже эта точка зрения была пересмотрена, специалисты повысили оценку давления, которое требуется для фазового перехода. Все это время условия перехода считались достижимыми, и ученые пробовали «взять планку», необходимую для перехода водорода в новую фазу. Впервые металлический водород пытались получить в 1970-х. Повторные попытки были предприняты в 1996, 2008 и 2011 году. Ранее сообщалось, что в 1996 году ученым из Германии удалось на долю микросекунды перевести водород в металлическое состояние, хотя не все согласны с этим.

Что касается давления, необходимого для получения металлического водорода, то с развитием квантовой механики и физики вообще стало понятно, что давление должно быть примерно в 20 раз более высоким, чем считалось ранее - не 25 ГПа, а 400 или даже 500 ГПа. Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов - Юпитера, Сатурна и крупных внесолнечных планет. Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода. Понятно, что для того, чтобы получить гигантское давление, нужны особые технологии и методы. Добиться желаемого получилось благодаря использованию двух алмазных наковален.

Прочность наковальни была усилена напылением из оксида алюминия, которое оказалось непроницаемым для атомов водорода. Образец водорода был сжат между заостренными концами двух алмазных наковален и при давлении в 495 ГПа ученые добились перехода образца в металлическую фазу.


Источник: Dias & Silvera, 2017

Во всяком случае, образец сначала потемнел, а затем стал отражать свет. При относительно низких показателях давления образец был непрозрачным, ток он не проводил. Эксперимент, проведенный Исааком Силвера (Isaac Silvera) и Ранга Диас (Ranga Dias), был повторным. Впервые добиться перехода водорода в металлическую фазу ученым удалось в середине 2016 года. Но результаты эксперимента нуждались в подтверждении, повторном опыте. Поскольку результаты изначального опыта подтвердились, их можно считать корректными.

К текущему результату ученые шли несколько лет. Только на то, чтобы достичь давления, при котором водород разбивается на индивидуальные атомы, у Силвера и Диас ушло три года. Давление, о котором идет речь - 380 ГПа.

После этого увеличение давления подразумевало необходимость усиления прочности алмазных наковален, которые использовались в эксперименте. Для этого стали напылять тончайшую пленку из оксида алюминия. Без усиления прочности алмазы, которые являются наиболее твердыми минералами на Земле, начинают разрушаться при увеличении давления выше показателя в 400 ГПа.

Учеными была проделана большая работа по изучению алмазов. Причин разрушения могло быть несколько - от дефектов структуры кристалла до влияния самого сжатого до огромной плотности водорода. Для того, чтобы решить первую проблему, специалисты тщательным образом проверяли структур кристалла под микроскопом с большим увеличением. «Когда мы просмотрели на алмаз под микроскопом, мы обнаружили дефекты, которые делают этот минерал уязвимым к внешним факторам», - заявил Силвера. Вторая проблема была решена при помощи напыления, противодействующего утечке атомов и молекул водорода.

Пока что сложно сказать , какую форму металла получили англичане - твердую или жидкую. Сами они затрудняются сказать, хотя считают, что водород перешел в фазу жидкого металла, поскольку это предсказано расчетами. В чем они уверены, так это в том, что образец водорода после сжатия стал в 15 раз более плотным, чем до начала этой процедуры. Температура водорода, который поместили в алмазную наковальню, составила 15К. После перехода элемента в металлическую фазу его нагрели до 83 К, и он сохранил свои металлические свойства. Расчеты показывают, что металлический водород может быть метастабильным, то есть сохранять свои свойства даже после того, как внешние факторы, которые привели к переходу элемента в металлическую фазу, будут ослаблены.

Зачем человеку металлический водород? Считается, что в таком состоянии он проявляет свойства высокотемпературного сверхпроводника. Кроме того, метастабильные соединения металлического водорода могут использоваться в качестве компактного, эффективного и чистого ракетного топлива. Так, при переходе металлического водорода в молекулярную фазу высвобождается примерно в 20 раз больше энергии, чем при сжигании килограмма смеси кислорода и водорода - 216 Мдж/кг.

«Для получения металлического водорода нам понадобилось огромное количество энергии. А если вы снова переведете атомарный металлический водород в молекулярное состояние, вся эта энергия высвободится, так что мы можем получить самое мощное ракетное топливо в мире, что совершит революцию в ракетостроении», - заявили авторы исследования. По их мнению, новое топливо, при условии его использования, позволит легко достичь других планет. Времени на путешествие к ним будет затрачено гораздо меньше, чем в настоящее время, с использованием современных технологий.