Равномерное вращение вокруг неподвижной оси. Вращательное движение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Связь величин, характеризующих поступательное и вращательное движение

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Вращательное движение твердого тела. Вращательным называется движение твердого тела, при котором остаются неподвижными все его точки, лежащие на некоторой прямой, называемой осью вращения.

При вращательном движении все остальные точки тела движутся в плоскостях, перпендикулярных оси вращения, и описывают окружности, центры которых лежат на этой осп.

Для определения положения вращающегося тела проведем через ось г две полуплоскости: полуплоскость I - неподвижную и полуплоскость II - связанную с твердым телом и вращающуюся вместе с ним (рис. 2.4). Тогда положение тела в любой момент времени будет однозначно определяться углом j между этими полуплоскостями, взятым с соответствующим знаком, который называется углом поворота тела.

При вращении тела угол поворота j изменяется в зависимости от времени, т. е. является функцией времени t:

Это уравнение называется уравнением вращательного движения твердого тела.

Основными кинематическими характеристи­ками вращательного движения твердого тела явля­ются его угловая скорость w угловое ускорение e.

Если за время Dt = t1 + t тело совершает пово­рот на Dj = j1 –j,то средняя угловая скорость тела за этот промежуток времени будет равна

(1.16)

Для определения значения угловой скорости тела в данный момент времени t найдем предел отношения приращения угла поворота Dj к промежутку времени Dt при стремлении последнего к нулю:

(2.17)

Таким образом, угловая скорость тела в данный момент времени численно равна первой производной от угла поворота по времени. Знак угловой скорости w совпадает со знаком угла поворота тела j: w> 0 при j> 0, и наоборот, если j< 0. то и w < 0. Размерность угловой скорости обычно 1/с, так радиан величина безразмерная.

Угловую скорость можно изобразить в виде вектора w, численная величина которого равна dj/dt который направлен вдоль оси вращения тела в ту строну, откуда вращение видно происходящим против часовой стрелки.

Изменение угловой скорости тела с течением времени характеризует угловое ускорение e. По аналогии с нахождением среднего значения угловой скорости найдем выражение для определения значения среднего ускорения:

(2.18)

Тогда ускорение твердого тела в данный момент времени определится из выражения

(2.19)

т. е. угловое ускорение тела в данный момент времени равно первой произ­водной от угловой скорости или второй производной от угла поворота тела по времени. Размерность углового ускорения 1/с 2 .

Угловое ускорение твердого тела так же, как и угловая скорость, может быть представлено как вектор. Вектор углового ускорения совпадает по на­правлению с вектором угловой скорости при ускоренном движении твердого юла и направлен в противоположную сторону при замедленном движении.

Установив характеристики движения твердого тела в целом, перейдем к изучению движения отдельных его точек. Рассмотрим некоторую точку М твердого тела, находящуюся на расстоянии h от оси вращения г (рис. 2.3).

При вращении тела точка М будет описывать окружное п. радиусом h с центром на оси вращения и лежащую в плоскости, перпендикулярной этой оси. Если за время dtпроисходит элементарный попорот тела па угол dj, то точка М при этом совершает вдоль своей траектории элементарное перемещение dS = h*dj,. Тогда скорость точки М определился из выражения

(2.20)

Скорость называют линейной или окружной скоростью точки М.

Таким образом, линейная скорость точки вращающегося твердого тела численно равна произведению угловой скорости тела на расстояние от этой точки до оси вращения. Так как для всех точек тела угловая скорость w; имеет одинаковое значение, то из формулы для линейной скорости следует, что ли­нейные скорости точек вращающегося тела пропорциональны их расстояниям от оси вращения. Линейная скорость точки твердого тела является вектором п направлена по касательной к окружности, описываемой точкой М.

Бели расстояние от оси вращения твердого пела до некоторой точки М рассматривать как радиус-вектор h точки М, то вектор линейной скорости точки v можно представить как векторное произведение вектора угловой скорости w радиус-вектор h:

V = w * h (2/21)

Действительно, результатом векторного произведения (2.21) является вектор, равный по модулю произведению w*h и направленный (рис. 2.5) перпендикулярно плоскости, в которой лежат два сомножителя, в ту сторону, откуда ближайшее совмещение первого сомножителя со вторым наблюдается происходящим против часовой стрелки, т. е. по касательной к траектории движения точки M.

Таким образом вектор, являющийся результатом векторного произведе­ния (2.21), по модулю и по направлению соответствует вектору линейной скорости точки M.

Рис. 2.5

Для нахождения выражения для ускорения а точки М выполним дифференцирование по времени выражения (2.21) для скорости точки

(2.22)

Учитывая, что dj/dt=e, a dh/dt = v, выражение (2.22) запишем в виде

где а г и аnсоответственно касательная и нормальная составляющие полного ускорения точки тела при вращательном движении, определяемые из выражений

Касательная составляющая полного ускорения точки тела (касательное ускорение) atхарактеризует изменение вектора скорости по модулю и направ­лена по касательной к траектории движения точки тела в направлении вектора скорости при ускоренном движении либо в противоположном направлении при замедленном движении. Модуль вектора касательного ускорения точки тела при вращательном движении твердого тела определяется выражением

(2,25)

Нормальная составляющая полного ускорения (нормальное ускорение) а„ возникает вследствие изменения направления вектора скорости точки при крашении твердого тела. Как следует из выражения (2.24) для нормального ускорения, это ускорение направлено по радиусу hк центру окружности, по которой перемещается точка. Модуль вектора нормального ускорения точки при вращательном движении твердого тела определяется с учетом (2.20) вы­ражением

Вращением твердого тела вокруг неподвижной оси (оси вращения) называется такое его движение, при котором точки тела, лежащие на оси вращения, остаются неподвижными в течение всего времени движения.

Пусть осью вращения является ось , которая может иметь в пространстве любое направление. Одно направление оси принимается за положительное (рис. 28).

Через ось вращения проведем неподвижную плоскость и подвижную , скрепленную с вращающимся телом. Пусть в начальный момент времени обе плоскости совпадают. Тогда в момент времени положение подвижной плоскости и самого вращающегося тела можно определить двугранным углом между плоскостями и соответствующим линейным углом между прямыми, расположенными в этих плоскостях и перпендикулярными оси вращения. Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета полностью определяется в любой момент времени, если задано уравнение

где – любая, дважды дифференцируемая функция времени. Это уравнение называют уравнением вращения твердого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра – угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным – в противоположном направлении, если смотреть с положительного направления оси . Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях, перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введем понятия угловой скорости и углового ускорения. Алгебраической угловой скоростью тела в какой-либо момент времени называют первую производную по времени от угла поворота в этот момент, т.е. . Она является величиной положительной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной – при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Модуль угловой скорости обозначают . Тогда

Алгебраическим угловым ускорением тела называют первую производную по времени от алгебраической скорости, т.е. вторую производную от угла поворота . Модуль углового ускорения обозначим , тогда

Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону (против часовой стрелки). При и , тело вращается ускоренно в отрицательную сторону. Если при , то имеем замедленное вращение в положительную сторону. При и замедленное вращение совершается в отрицательную сторону.

Это движение, при котором все точки тела движутся по окружностям, центры которых лежат на оси вращения.

Положение тела задается двугранным углом (углом поворота).

 =  (t) - уравнение движения.

Кинематические характеристики те­ла:

- угловая скорость, с -1 ;

- угловое ускорение, с -2 .

Величины  и  можно представить в виде векторов
, расположенных на оси вращения, направление вектора таково, что с его конца враще­ние тела видно происходящим против часовой стрелки. Направление совпадает с , если >о.

Положение точки тела: M 0 M 1 = S = h.

Скорость точки
; при этом
.

откуда
;
;
.

Ускорение точки тела ,
‑ вращательное ускорение (в кинематике точки – касательное ‑):
- осестремительное ускорение (в кинематике точки - нор­мальное -).

Модули:
;
;

.

Равномерное и равнопеременное вращение

1. Равномерное:  = const,
;
;
- уравнение движения.

2. Равнопеременное:  = const,
;
;
;
;
- уравнение движения.

2). Механический привод состоит из шкива 1, ремня 2 и ступенчатых колес 3 и 4. Найти скорость рейки 5, а также ускорение точкиM в момент времени t 1 = 1с. Если угловая ско­рость шкива равна  1 = 0,2t , с -1 ; R 1 = 15; R 3 = 40; r 3 = 5; R 4 = 20; r 4 = 8 (в сантиметрах).

Скорость рейки

;

;
;
.

Откуда
;
;
, с -1 .

Из (1) и (2) получим , см.

Ускорение точки M .

, с -2 при t 1 = 1 с; a = 34,84 см/с 2 .

3.3 Плоскопараллельное (плоское) движение твердого тела

Это движение, при котором все точки тела движутся в плоскостях, параллельных некоторой неподвижной пло­скости.

Все точки тела на любой прямой, перпендикулярной неподвижной пло­скости, движутся одинаково. Поэтому анализ плоского движения тела сво­дится к исследованию движения пло­ской фигуры (сечение S) в ее плоскости (xy).

Это движение можно представить как совокупность поступательного движения вместе с некоторой произвольно выбранной точкой а, называемой полюсом , и вращательного движе­ния вокруг полюса.

Уравнения движения плоской фигуры

x а = x a (t); у а = у а; j = j(t)

Кинематические характеристи­ ки плоской фигуры:

- скорость и ускорение по­люса; w, e - угловая скорость и угловое ускорение (не зависят от выбора полюса).

Уравнения движения любой точки плоской фигуры (B) можно получить, проектируя векторное равенство
на осиx и у

x 1 B , y 1 B - координаты точки в системе координат, свя­занной с фигурой.

Определение скоростей точек

1). Аналитический способ .

Зная уравнения движения x n = x n (t); y n = y n (t), находим
;
;
.

2). Теорема о распределении скоростей.

Дифференцируя равенство
, получим
,

- скорость точки B при вращении пло­ской фигуры вокруг полюса A;
;

Формула распределения скоро­стей точек плоской фигуры
.

Скорость точкиM колеса, катящегося без скольжения

;
.

3). Теорема о проекциях ско­ростей.

Проекции скоростей двух то­чек тела на ось, проходящую че­рез эти точки, равны. Проектируя равенство
на осьx, имеем

Пример

Определить скорость натекания воды v Н на руль корабля, если извест­ны (скорость центра тяжести суд­на),b и b K (углы дрейфа).

Решение: .

4). Мгновенный центр скоростей (МЦС).

Скорости точек при плоском движении тела можно определять по формулам вращательного движения, используя понятие МЦС.

МЦС - точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю (v p = 0).

В общем случае МЦС - точка пере­сечения перпендикуляров к направле­ниям скоростей двух точек фигуры.

Принимая точку P за полюс, имеем для произвольной точки

, тогда

Откуда
- угловая скорость фигуры и
,т.е. скорости точек плоской фигуры пропор­циональны их расстояниям до МЦС.

Возможные случаи нахождения МЦС

Качение без скольжения


МЦС - в бес­конечности

Случай б соответствует мгновенно поступательному распределению скоростей.

1). Для заданного положения механизма найтиv B , v C ,v D , w 1 , w 2 , w 3 , если в данный момент v A = 20 см/с; BC = CD = 40 см; OC = 25 см; R = 20 см.

Решение МЦС катка 1 - точка P 1:

с -1 ;
см/с.

МЦС звена 2 - точка P 2 пересечения перпендикуляров к на­правлениям скоростей точек B и C:

с -1 ;
см/с;
см/с;
с -1 .

2). Груз Q поднимается с помощью ступенчатого бара­бана 1, угловая скорость которого w 1 = 1 с -1 ; R 1 = 3r 1 = 15 см; AE || BD. Найти скорость v C оси подвижного блока 2.

Находим скорости точек A и B:

v A = v E = w 1* R 1 = 15 см/с; v B = v D = w 1* r 1 = 5 см/с.

MЦС блока 2 - точка P. Тогда
, откуда
;
;
см/с.

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.