Что такое комета: истории открытий, самые известные кометы. Что такое комета: истории открытий, самые известные кометы Сколько комет в солнечной системе

Кометы - космические снежки, состоящие из замороженных газов, скал и пыли и размером примерно с небольшой город. Когда орбита кометы приносит ее близко к Солнцу, она нагревается и извергает пыль и газ, вследствие чего она становится ярче, чем большинство планет. Пыль и газ образуют хвост, который тянется от Солнца на миллионы километров.

10 фактов, которые необходимо знать о кометах

1. Если бы Солнце было бы таким же большим как входная дверь, Земля была бы размером с монетку, карликовая планета Плутон окажется размером с булавочную головку, а крупнейшая комета Пояса Койпера (которая имеет около 100 км в поперечнике, что составляет примерно одну двадцатую Плутона) будет размером с пылинку.
2. Короткопериодические кометы (кометы, которые совершают полный оборот вокруг Солнца менее чем за 200 лет) проживают в ледяном регионе, известном как Пояс Койпера, расположенном за орбитой Нептуна. Длинные комет (кометы с длинными, непредсказуемыми орбитами) берут начало в далеких уголках Облака Оорта, которое расположено на расстоянии до 100 тысяч а.е.
3. Дни на комете меняются. Например, день на комете Галлея колеблется от 2,2 до 7,4 земных суток (время, необходимое для того, чтобы кометы совершила полный оборот вокруг своей оси). Комета Галлея делает полный оборот вокруг Солнца (год на комете) за 76 земных лет.
4. Кометы – космические снежки, состоящие из замороженных газов, скал и пыли.
5. Комета разогревается по мере приближения к Солнцу и создает атмосферу или ком. Ком может иметь сотни тысяч километров в диаметре.
6. Кометы не имеют спутников.
7. Кометы не имеют колец.
8. Более 20 миссий были направлены на изучения комет.
9. Кометы не могут поддерживать жизнь, но, возможно, принесли воду и органические соединения - строительные блоки жизни - через столкновения с Землей и другими объектами в нашей Солнечной системе.
10. Комета Галлея впервые упоминается в Байе от 1066 года, в которой рассказывается о свержении короля Гарольда Вильгельмом Завоевателем в битве при Гастингсе.

Кометы: Грязные снежки Солнечной системы

Кометы В наших путешествиях через Солнечную систему, нам можем посчастливиться столкнуться с гигантскими шарами льда. Это кометы Солнечной системы. Некоторые астрономы называют кометы "грязными снежками" или "ледяными шарами грязи", потому что они состоят в основном изо льда, пыли и обломков скал. Лед может состоять как из ледяной воды так и из замороженных газов. Астрономы полагают, что кометы могут состоять из первоначального материала, который лег в основу формирования Солнечной системы.

Хотя большая часть мелких объектов в нашей Солнечной системе представляют собой очень недавние открытия, кометы были хорошо известны с древних времен. У китайцев есть записи комет, которые датируются 260 г. до н.э. Это потому, что кометы являются единственными из малых тел в Солнечной системе, которые можно увидеть невооруженным глазом. Кометы, которые проходят по орбите вокруг Солнца, представляют собой довольно захватывающее зрелище.

Хвост кометы

Кометы на самом деле невидимы до того момента, пока они не начинают приближаться к Солнцу. В этот момент они начинают нагреваться и начинается удивительное превращение. Пыль и газы, замерзшие в комете, начинают расширяться и вырываются со взрывной скоростью.

Твердую часть кометы называют ядром кометы, в то время как облако пыли и газа вокруг него известно как кома кометы. Солнечные ветра подхватывают материал в коме, оставляя хвост за кометой, протяженностью несколько миллионов миль. По мере освещением Солнца, этот материал начинает светиться. В конечном итоге формируется знаменитый хвост кометы. Кометы и их хвосты часто зачастую можно увидеть с Земли и невооруженным взглядом.

Космический телескоп Хаббл запечатлел комету Шумейкера-Леви 9 в момент падения ее на поверхность Юпитера.

Некоторые кометы могут иметь до трех отдельных хвостов. Один из них будет состоять в основном из водорода, и является невидимым для глаза. Другой хвост пыли светится ярко-белый, а третий хвост плазмы обычно будет принимать голубое свечение. Когда Земля проходит через эти тропы пыли, оставленные кометами, пыль поступает в атмосферу и создает метеорные потоки.

Активные струи на комете Хартли 2

Некоторые кометы летят по орбите, проходящей вокруг Солнца. Они известны как периодические кометы. Периодическая комета теряет значительную часть своего материала каждый раз, когда проходит рядом с Солнцем. В конце концов, после того, как весь этот материал теряется, они перестанут становятся активными и бродят по Солнечной системе, как темный каменный шар с пылью. Комета Галлея, вероятно, самый известный пример периодической кометы. Комета меняет свой внешний вид каждые 76 лет.

История комет
Внезапное появление этих загадочных объектов в древности часто рассматривали как плохое предзнаменование и предупреждения стихийных бедствий в будущем. В настоящий момент мы знаем, что большинство комет находятся в плотном облаке, расположенном на краю нашей Солнечной системы. Астрономы называют его Облако Оорта. Они считают, что гравитация от случайного прохождения звезд или других объектов может сбить некоторые из комет из Облака Оорта и отправить их в путешествие во внутреннюю часть Солнечной системы.

Манускрипт с изображением комет у древних китайцев

Кометы могут столкнулся и с Землей. В июне 1908 года, что-то взорвалось высоко в атмосфере над поселком Тунгуски в Сибири. Взрыв имел силу 1000 бомб, сброшенных на Хиросиму и сравнял деревья с землей на сотни миль. Отсутствие каких-либо фрагментов метеорита навело ученых на мысль, что это, возможно, была небольшая комета, которая взорвалась при ударе с атмосферой.

Кометы, возможно, также были ответственны за исчезновение динозавров, и многие астрономы считают, что древние воздействия комет принесло большую часть воды на нашу планету. Хотя существует вероятность, что Земля снова может быть сбита большой кометой в будущем, шансы на то, что это событие произойдет в течение нашей жизни больше, чем один к миллиону.

На данный момент, кометы просто продолжают быть объектами изумления в ночном небе.

Наиболее известные кометы

Комета ISON

Комета ISON была предметом самых скоординированных наблюдений за всю историю изучения комет. В течение года, более десятка космических аппаратов и многочисленные наземные наблюдатели собирали то, что как полагают, было крупнейшим сбором данных о комете.

Известная в каталоге как C/2012 S1, комета ISON начала свое путешествие к внутренней части Солнечной системы около трех миллионов лет назад. Она впервые была замечена в сентябре 2012 года, находясь на расстоянии 585000000 миль. Это было ее самое первое путешествие вокруг Солнца, то есть она была сделана из первозданной материи, возникшей в первые дни формирования Солнечной системы. В отличие от комет, которые уже сделали несколько проходов через внутреннюю Солнечную систему, верхние слои кометы ISON никогда не подвергались нагреву Солнцем. Комета представляла своеобразную капсулу времени, в которой был запечатлен момент формирования нашей Солнечной системы.

Ученые со всего мира начали беспрецедентную кампанию наблюдения, с использованием многих наземных обсерваторий и 16 космических аппаратов (все, кроме четырех успешно изучали комету).

28 ноября 2013 года, ученые наблюдали, как комета ISON была разорвана гравитационными силами Солнца.

Российские астрономы Виталий Невский и Артем Новичонок обнаружили комету с помощью 4-метрового телескопа в Кисловодске, Россия.

ISON носит имя программы обследования ночного неба, которая и открыла ее. ISON - это группа обсерваторий в десяти странах, которые объединены для обнаружения, мониторинга и отслеживания объектов в космосе. Сеть управляется Институтом прикладной математики Российской Академии Наук.

Комета Энке

Комета 2Р/ЭнкеКомета 2Р/Энке – это небольшая комета. Ее ядро ​​имеет размер приблизительно 4,8 км (2,98 миль) в диаметре, что составляет около одной трети от размера объекта, который предположительно привел к гибели динозавров.

Период обращения кометы вокруг Солнца составляет 3,30 лет. Комета Энке имеет самый короткий период обращения среди любой известной кометы в пределах нашей Солнечной системы. Энке в прошлом прошла перигелий (ближайшую точку к Солнцу) в ноябре 2013 года.

Фотография кометы, сделанная телескопом Спитцер

Комета Энке является родительской кометой метеорного потока Тауриды. Тауриды, пик которых в октябре / ноябре каждого года, - это быстрые метеоры (104,607.36 км / ч или 65 000 миль в час), известные своими болидами. Болиды - это метеоры, которые такие же яркие или даже ярче, чем планета Венера (если смотреть в утреннее или вечернее небо с видимой величиной яркости -4). Они могут создавать крупные взрывы света и цветов и существовать дольше, чем средний метеорный поток. Это связано с тем, что болиды происходят из более крупных частиц материала кометы. Часто, этот особый поток болидов возникает во время или около дня Хэллоуина, что делает их известными как Болиды Хэллоуина.

Комета Энке приблизилась к Солнцу в 2013 году в то же время, когда много говорили и представляли комету Айсон, и из-за этого была сфотографирована обоими космическими аппаратами MESSENGER и STEREO.

Комета 2Р/Энке была впервые обнаружена Пьером Ф.А. Мешеном 17 января 1786 года. Другие астрономы находили этот комету в последующих прохождениях, но эти наблюдения не были определены как одна и та же комета, пока Иоганн Франц Энке не вычислил ее орбиту.

Кометы, как правило, названы по имени их первооткрывателя (ей) или по названию обсерватории / телескопа, используемых в открытие. Тем не менее, эта комета не названа в честь ее первооткрывателя. Вместо этого ее назвали в честь Иоганна Франца Энке, который рассчитал орбиту кометы. Буква Р указывает, что 2Р/Энке является периодической кометой. Периодические кометы имеют период обращения менее 200 лет.

Комета D/1993 F2 (Шумейкеров - Леви)

Комета Шумейкеров-Леви 9 была захвачена гравитацией Юпитера, разлетелась, а затем врезалась в гигантскую планету в июле 1994 года.

Когда комета была открыта в 1993 году, она уже была раздроблена на более чем 20 осколков, путешествующих вокруг планеты по двухгодичной орбите. Дальнейшие наблюдения показали, что комета (считается, что была единой кометой в то время) близко подошла к Юпитеру в июле 1992 года и была раздроблена приливными силами в результате мощной силой тяжести планеты. Комета, как полагают, вращалась на орбите Юпитера около десяти лет до своей гибели.

Разрушение кометы на множество частей было редкостью, и наблюдение захваченной на орбите кометы около Юпитера было еще более необычным, но самое большое и редкое открытие было в том, что фрагменты врезались в Юпитер.

У НАСА был космический аппарат, который наблюдал - впервые в истории - столкновение между двумя телами в Солнечной системе.

Орбитальному аппарату Галилей НАСА (тогда еще на пути к Юпитеру) удалось установить прямой вид на части кометы, помеченные от A до W, которые сталкивались с облаками Юпитера. Столкновения начались 16 июля 1994 года и закончились 22 июля 1994 года. Многие наземные обсерватории и орбитальные космические аппараты, включая космический телескоп Хаббла, Улисс и Вояджер 2, также изучили столкновения и их последствия.

След от падения кометы на поверхности Юпитера

«Грузовой поезд» из фрагментов разбился на Юпитере с силой 300 млн. атомных бомб. Они создали огромные струи дыма, которые были от 2000 до 3000 километров (1200 - 1900 миль) высотой, и нагрели атмосферу до очень жарких температур, равных от 30000 до 40000 градусов по Цельсию (53 000 - 71 000 градусов по Фаренгейту). Комета Шумейкеров-Леви 9 оставила темные, кольчатые шрамы, которые в конечном итоге были стерты ветрами Юпитера.

Когда столкновение происходило в реальном времени, это было больше, чем просто шоу. Это дало ученым возможность взглянуть по-новому на Юпитер, комету Шумейкеров-Леви 9 и космические столкновения в целом. Исследователи смогли вывести состав и структуру кометы. Столкновение также оставило пыль, которая находится в верхней части облаков Юпитера. Наблюдая за пылью, распространяющейся по планете, ученые впервые смогли отследить направление высотных ветров на Юпитере. И, сравнивая изменения в магнитосфере с изменениями в атмосфере после удара, ученые смогли изучить соотношение между ними.

Ученые подсчитали, что комета была первоначально около 1,5 - 2 километра (0,9 - 1,2 миль) в ширину. Если объект подобного размера поразил бы Землю, это бы имело разрушительные последствия. Столкновение может отправить пыль и обломки в небо, создавая туман, который бы охладил атмосферу и поглощал солнечный свет, окутывая всю планету темнотой. Если туман будет длиться достаточно долго, жизнь растений умрет - вместе с людьми и животными, которые зависят от них, чтобы выжить.

Такие виды столкновений были более частыми в ранней Солнечной системе. Вероятно, столкновения комет происходили, главным образом потому, что Юпитеру недоставало водорода и гелия.

В настоящее время столкновения такого масштаба, вероятно, происходят только раз в несколько столетий - и представляют реальную угрозу.

Комета Шумейкеров-Леви 9 была обнаружена Каролиной и Юджином Шумейкерами и Дэвидом Леви в изображении, полученном 18 марта 1993 года в 0,4-метровом телескопе Шмидта на горе Паломар.

Комета была названа в честь ее первооткрывателей. Комета Шумейкеров-Леви 9 была девятой короткопериодической кометой, открытой Юджином и Каролиной Шумейкерами и Дэвидом Леви.

Комета Темпеля

Комета 9P/ТемпеляКомета 9P/Темпеля вращается вокруг Солнца в поясе астероидов, расположенном между орбитами Марса и Юпитера. В последний раз комета прошла свой перигелий (ближайшая к Солнцу точка) в 2011 году и вернется снова в 2016 году.

Комета 9P/Темпеля относится к семейству комет Юпитера. Кометы семейства Юпитера – это кометы, у которых орбитальный период составляет менее 20 лет и орбиты проходят рядом с газовым гигантом. Комете 9P/Темпеля требуется 5,56 лет, чтобы совершить один полный период вокруг Солнца. Однако орбита кометы постепенно меняется с течением времени. Когда комету Темпеля впервые обнаружили, ее орбитальный период составлял 5,68 года.

Комета Темпеля – небольшая комета. Ее ядро имеет около 6 км (3,73 миль) в диаметре, что предположительно составляет половину размера объекта, падение которого привело к гибели динозавров.

Было отправлено две миссии для изучения этой кометы: Deep Impact в 2005 году и Stardust в 2011 году.

Возможный след столкновения на поверхности кометы Темпеля

Deep Impact направила ударный снаряд на поверхность кометы, став первым космическим аппаратом, способным извлечь материал с поверхности кометы. В результате столкновения выделилось относительно мало воды и много пыли. Это говорит о том, что комета - далеко не «глыба льда». Результат воздействия ударного снаряда было позже запечатлено космическим аппаратом Stardust.

Комета 9P/Темпеля была обнаружена Эрнстом Вильгельмом Леберехтом Темпелем (более известном как Вильгельм Темпель) 3 апреля 1867 года.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Поскольку Вильгельм Темпель обнаружил эту комету, она названа в его честь. Буква «Р» означает, что комета 9P/Темпеля является короткопериодической кометой. Короткопериодические кометы имею орбитальный период меньше 200 лет.

Комета Борелли

Комета 19P/БореллиПохожее на куриную ножку, небольшое ядро кометы 19P/Борелли имеет около 4,8 км (2,98 миль) в диаметре, что составляет около трети размера объекта, падение которого привело к гибели динозавров.

Комета Борелли вращается вокруг Солнца в поясе астероидов и является членом семейства комет Юпитера. Кометы семейства Юпитера – это кометы, у которых орбитальный период составляет менее 20 лет и орбиты проходят рядом с газовым гигантом. Ей требуется около 6,85 лет для того, чтобы совершить один полный оборот вокруг Солнца. Свой последний перигелий (ближайшая к Солнцу точка) комета прошла в 2008 году и вернется снова в 2015 году.

Космический аппарат Deep Space 1 пролетел рядом с кометой Борелли 22 сентября 2001 года. Путешествуя со скоростью 16,5 км (10,25 миль) в секунду, Deep Space 1 пролетел на расстоянии 2200 км (1367 миль) выше ядра кометы Борелли. Этот космический корабль сделал лучшее фотографии ядра кометы за все время.

Комета 19P/Борелли была обнаружена Альфонсом Луи Николя Боррелли 28 декабря 1904 в Марселе, Франция.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Альфонс Боррелли обнаружил эту комету и именно поэтому она названа в его честь. Буква «Р» означает, что 19P/Борелли является короткопериодической кометой. Короткопериодические кометы имею орбитальный период меньше 200 лет.

Комета Хейла-Боппа

Комета C/1995 O1 (Хейла-Боппа)Также известная как Великая Комета 1997 года, комета C/1995 O1 (Хейла-Боппа) является довольно большой кометой, размеры ядра которой достигают 60 км (37 миль) в диаметре. Это примерно в пять раз больше предполагаемого объекта, падение которого привело к гибели динозавров. Из-за своих больших размеров, эта комета была видна невооруженным глазом в течение 18 месяцев в 1996 и 1997 годах.

Комете Хейла-Боппа требуется около 2534 лет для того, чтобы совершить один полный оборот вокруг Солнца. Комета прошла свой последний перигелий (ближайшая к Солнцу точка) 1 апреля 1997 года.

Комета C/1995 O1 (Хейла-Боппа) была обнаружен в 1995 году (23 июля), независимо друг от друга Аланом Хейлом и Томасом Боппем. Комета Хейла-Боппа была открыта на удивительном расстоянии в 7,15 а.е. Один а.е равен примерно 150 млн. км (93 миллиона миль).

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Поскольку Алан Хейл и Томас Бопп обнаружили эту комету, она названа в их честь. Буква «С» означает. Что комета C/1995 O1 (Хейла-Боппа) является долгопериодической кометой.

Комета Вильда

Комета 81P/Вильда81P/Вильда (Вильд 2) представляет собой небольшую комету с формой сплющенного шара и размером около 1,65 х 2 х 2,75 км (1,03 х 1,24 х 1,71 миль). Ее период обращения вокруг Солнца - 6,41 лет. Комета Вильда последний раз прошла перигелий (ближайшую точку к Солнцу) в 2010 году и вернется снова в 2016 году.

Комета Вильда известна как новая периодическая комета. Комета вращается вокруг Солнца между Марсом и Юпитером, но она не всегда путешествовала по такому пути орбиты. Первоначально орбита этой кометы проходила между Ураном и Юпитером. 10 сентября 1974 года гравитационные взаимодействия между этой кометой и планетой Юпитером изменило орбиту кометы в новую форму. Пауль Вильд обнаружил эту комету во время ее первого вращения вокруг Солнца на новой орбите.

Анимимированное изображение кометы

Так как Вильда является новой кометой (у нее не было столько орбит вокруг Солнца на близком расстоянии), это идеальный образец для открытия чего-то нового о ранней Солнечной системе.

НАСА использовали эту особую комету, когда в 2004 году они назначили миссию Стардаст лететь к ней и собрать частицы комы – первый сбор такого рода внеземных материалов дальше орбиты Луны. Эти образцы были собраны в аэрогелевый коллектор, когда аппарат пролетал в 236 км (147 миль) от кометы. Образцы затем были возвращены на Землю в капсуле, подобной Аполлону, в 2006 году. В тех образцах ученые обнаружили глицин: фундаментальный строительный блок жизни.

Кометы, как правило, называются по имени их первооткрывателя (ей) или по названию обсерватории / телескопа, используемых в открытии. Поскольку Пауль Вильд обнаружил эту комету, ее назвали в его честь. Буква "Р" означает, что 81P/Вильда (Вильд 2) является "периодической" кометой. Периодические кометы имеют период обращения менее 200 лет.

Комета Чурюмова-Герасименко

Комета 67P / Чурюмова-Герасименко может попасть в историю как первая комета, на которую приземлятся роботы с Земли и которые будут сопровождать ее на всей орбите. Космический аппарат Розетта, носящий посадочный модуль Фила, планирует сближение с этой кометой в августе 2014 года, чтобы сопроводить ее на своем пути к внутренней Солнечной системе и обратно. Розетта является миссией Европейского космического агентства (ЕКА), которого НАСА обеспечивает основными инструментами и поддержкой.

Комета Чурюмова-Герасименко делает петлю вокруг Солнца по орбите, пересекающей орбиты Юпитера и Марса, приближаясь, но, не выходя на орбиту Земли. Как и большинство комет семейства Юпитера, она, как полагают, выпала с Пояса Койпера, областью за орбитой Нептуна, в результате одного или нескольких столкновений или гравитационных рывков.

Поверхность кометы 67P/Чурюмова-Герасименко крупным планом

Анализ орбитальной эволюции кометы указывает на то, что до середины 19-го века ближайшее расстояние до Солнца составляло 4,0 а.е. (около 373 млн. миль или 600 миллионов километров), что примерно составляет две трети пути от орбиты Марса к Юпитеру. Так как комета слишком далека от тепла Солнца, у нее не вырос ком (оболочка) или хвост, так что комету не видно с Земли.

Но ученые подсчитали, что в 1840 году довольно близкая встреча с Юпитером, должно быть, отправила комету лететь глубже внутрь Солнечной системы, вплоть до приблизительно 3,0 а.е. (около 280 миллионов миль или 450 миллионов километров) от Солнца. Перигелий Чурюмова-Герасименко (ближайшее приближение к Солнцу) находился чуть ближе к Солнцу в течение следующего столетия, а затем Юпитер дал комете другой гравитационный удар в 1959 году. С тех пор перигелий кометы остановился на 1,3 а.е., что составляет около 27 миллионов миль (43 миллиона километров) за пределами земной орбиты.

Размеры кометы 67P/Чурюмова-Герасименко

Ядро кометы считается довольно пористым, что дает ему плотность намного ниже, чем у воды. При нагревании Солнцем комета, как полагают, излучает примерно в два раза больше количества пыли в виде газа. Маленькой деталью, известной о поверхности кометы, является то, что посадочная площадка для Филы не будет выбрана до того, как Розетта не обследует ее с близкого расстояния.

Во время последних визитов в нашу часть Солнечной системы комета была недостаточно яркой, чтобы увидеть с Земли без телескопа. На этот приход мы сможем увидеть фейерверк крупным планом, благодаря глазам наших роботов.

Обнаружена 22 октября 1969 в обсерватории Алма-Аты, СССР. Клим Иванович Чурюмов нашел изображение этой кометы при рассмотрении фотопластинки другой кометы (32P/Комас Сола), сделанной Светланой Ивановой Герасименко 11 сентября 1969 года.

67P указывает на то, что это была 67-я открытая периодическая комета. Чурюмов и Герасименко - это имена первооткрывателей.

Комета Сайдинг-Спринг

Комета Макнота Комета C/2013 A1 (Сайдинг-Спринг) направляется на бреющем полете к Марсу 19 октября 2014 года. Ожидается, что ядро кометы пронесется рядом с планетой на расстоянии в космический волосок, что составляет 84000 миль (135000 км), это примерно одна треть расстояния от Земли до Луны и одна десятая расстояния, на котором любая известная комета пролетала мимо Земли. Это представляет как прекрасную возможность для изучения, так и потенциальную опасность для космических аппаратов в этой области.

Поскольку комета подойдет к Марсу почти лоб в лоб, и так как Марс летит по собственной орбите вокруг Солнца, они пройдут мимо друг друга с огромной скоростью - около 35 миль (56 километров) в секунду. Но комета может иметь настолько большой ком, что Марс может лететь через высокоскоростные частицы пыли и газа в течение нескольких часов. Марсианская атмосфера, вероятно, защитит марсоходы на поверхности, но космический на орбите аппарат будет под массированным обстрелом частиц, движущихся в два или три раза быстрее, чем метеориты, удары которых космический аппарат обычно выдерживает.

Космический аппарат НАСА передал на Землю первые фотографии кометы Сайдинг-Спринг

«Наши планы по использованию космического аппарата на Марсе, чтобы наблюдать за кометой Макнота, будут скоординированы с планами, как орбитальные аппараты смогут находиться в стороне от потока и в случае необходимости будут защищены», - сказал Рич Журек, главный ученый программы по изучению Марса в Лаборатории реактивного движения НАСА.

Один из способов защиты орбитальных аппаратов заключается в позиционировании их позади Марса во время самых рискованных неожиданных встречах. Другой способ заключается в том, что космический аппарат «уворачивается» от кометы, стремясь оградить наиболее уязвимое оборудование. Но такие маневры могут вызвать изменения ориентации солнечных батарей или антенн таким образом, что это станет препятствием способности аппаратов генерировать питание и иметь связь с Землей. «Эти изменения потребуют огромное количество испытаний», - сказал Сорен Мэдсен, главный инженер программы изучения Марса в Лаборатории реактивного движения. «Очень много приготовлений нужно сделать сейчас, чтобы подготовить себя к случаю, если в мае мы узнаем, что демонстрационный полет будет рискованным».

Комета Сайдинг-Спринг выпала из Облака Оорта - огромной сферической области долгопериодических комет, которая огибает Солнечную систему. Чтобы получить представление о том, как далеко это, рассмотрим такую ​​ситуацию: Вояджер-1, который путешествует в космосе с 1977 года, находится гораздо дальше, чем любая из планет, и даже вышел из гелиосферы, огромного пузыря магнетизма и ионизованного газа, излучающего Солнцем. Но кораблю потребуется еще 300 лет, чтобы достичь внутреннего «края» Облака Оорта, и на его текущей скорости в миллион миль в день нужно еще около 30000 лет, чтобы закончить проходить через облако.

Время от времени некоторое гравитационное воздействие – возможно от прохождения мимо звезды - подталкивает комету освободиться от своего невероятно огромного и далекого хранилища, и она упадет на Солнце. Это то, что должно было произойти с кометой Макнота несколько миллионов лет назад. Все это время падение было направлено к внутренней части Солнечной системы, и оно дает нам только один шанс в его изучении. По имеющимся оценкам ее следующий визит будет примерно через 740 тысяч лет.

«С» указывает на то, что комета не является периодической. 2013 А1 показывает, что она была первой кометой, открытой в первой половине января 2013 года. Сайдинг-Спринг - это название обсерватории, где она была обнаружена.

Комета Джакобини-Циннера

Комета 21P / Джакобини-Циннера – это небольшая комета с диаметром 2 км (1,24 мили). Период обращения вокруг Солнца составляет 6,6 года. В последний раз комета Джакобини - Циннера прошла перигелий (ближайшая точка к Солнцу) 11 февраля 2012 года. Следующее прохождение перигелия будет в 2018 году.

Каждый раз, когда комета Джакобини - Циннера возвращается к внутренней Солнечной системе, ее ядро ​​распыляет лед и камни в космос. Этот поток обломков приводит к ежегодному метеоритному дождю: дракониды, которые проходят каждый год в начале октября. Дракониды излучаются из северного созвездия Дракона. В течении многих лет поток слаб, и в этот период видно очень мало метеоритов. Тем не менее, периодически в записях имеются упоминания о метеорных бурях драконид (иногда называемые джакобинидами). Метеорный шторм наблюдается, когда тысяча или более метеоров видны в течение часа на месте наблюдателя. Во время своего пика в 1933 году, 500 метеоров драконида были замечены в течение минуты в Европе. 1946 был также неплохим годом для драконид, в США в течение одной минуты были замечены около 50 -100 метеоров.

Кома и ядро кометы 21P/Джакобини-Циннера

В 1985 году (11 сентября) повторно определенная миссия, названная ICE (Международный кометный исследователь, формально - Международный исследователь Солнца и Земли -3, ), была назначена для сбора данных этой кометы. ICE был первым космическим аппаратом, который летел за кометой. ICE позже присоединился к знаменитой «армаде» космических аппаратов, отправленных к комете Галлея в 1986 году. Еще одна миссия, названная Sakigaki, из Японии, была назначена на полет за этой кометой в 1998 году. К сожалению, космическому аппарату не хватало топлива, чтобы достичь кометы.

Комета Джакобини - Циннера была обнаружена 20 декабря 1900 Мишелем Джакобини в обсерватории Ниццы во Франции. Сведения об этой комете были позднее восстановлены Эрнстом Циннером в ​​1913 (23 октября).

Кометы, как правило, называются по имени их первооткрывателя (ей) или по названию обсерватории / телескопа, используемых в открытие. Так как Мишель Джакобини и Эрнст Циннер обнаружили и восстановили эту комету, она названа в честь них. Буква "Р" означает, что комета Джакобини - Циннера является "периодической" кометой. Периодические кометы имеют период обращения менее 200 лет.

Комета Тэтчер

Комета C/1861 G1 (Тэтчер)Комете C/1861 G1 (Тэтчер) требуется 415,5 года, чтобы совершить один полный оборот вокруг Солнца. Комета Тэтчер прошла свой последний перигелий (ближайшая к Солнцу точка) в 1861 году. Комета Тэтчер является долгопериодической кометой. Долгопериодические кометы имеют орбитальный период более 200 лет.

Когда комета проходят вокруг Солнца, пыль, которую они излучают, распространяется в пыльный след. Каждый год, когда Земля проходит через этот след кометы, космический мусор сталкивается с нашей атмосферой, где он распадается и создает огненные красочные полосы в небе.

Куски космического мусора, исходящие из кометы Тэтчер и взаимодействующие с нашей атмосферой, создают метеорный поток Лириды. Этот ежегодный метеорный поток происходит каждый апрель. Лириды являются одними из старейших известных метеорных потоков. Первый задокументированный метеорный поток лириды восходит к 687 г. до н.э.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Так как А. Е. Тэтчер обнаружил эту комету, она названа в его честь. Буква "С" означает, что комета Тэтчер является долгопериодической кометой, то есть ее орбитальный период составляет более 200 лет. 1861 год является годом ее открытия. "G" обозначает первую половину апреля, а "1" означает, что Тэтчер была первой кометой, открытой в этом периоде.

Комета Свифта-Туттля

Комета Свифта-Туттля Комете 109Р/Свифта-Туттля требуется 133 года, чтобы совершить один полный оборот вокруг Солнца. Комета прошла свой последний перигелий (ближайшая к Солнцу точка) в 1992 году и вернется снова в 2125.

Комета Свифта-Туттля считается большой кометой – ее ядро имеет 26 км (16 миль) в поперечнике. (То есть более чем в два раза больше размера предполагаемого объекта, падение которого привело к гибели динозавров.) Куски космического мусора, выбрасываемые из кометы Свифта-Туттля и взаимодействующие с нашей атмосферы, создают популярный метеорный поток Персеиды. Этот ежегодный метеорный поток происходит каждый август и достигает свой пик в середине месяца. Джованни Скиапарелли был первым, кто понял, что источником персеид является эта комета.

Комета Свифта-Туттля была обнаружена в 1862 году независимо друг от друга Льюисом Свифтом и Горацием Туттлем.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Так как Льюис Свифт и Гораций Туттль обнаружили эту комету, она названа в их честь. Буква "Р" означает, что комета Свифта-Туттля является короткопериодической кометой. Короткопериодические кометы имеют орбитальный период менее 200 лет.

Комета Темпеля-Туттля

Комета 55P/Темпеля-Туттля представляет собой небольшую комету, ядро которой составляет 3,6 км (2,24 миль) в поперечнике. Ей требуется 33 года, чтобы совершить один полный оборот вокруг Солнца. Комета Темпеля-Туттля прошла свой перигелий (ближайшую к Солнцу точку) в 1998 году и вернется снова в 2031 году.

Куски космического мусора, исходящие из кометы, взаимодействуют с нашей атмосферой и создают метеорный поток Леониды. Как правило, это слабый метеорный поток, пик которого приходится на середину ноября. Каждый год Земля проходит через этот мусор, который при взаимодействии с нашей атмосферой распадается и создает огненные красочные полосы на небе.

Комета 55P/Темпеля-Туттля в феврале 1998 года

Каждые 33 лет, или около того, метеорный поток Леониды превращается в настоящий метеорный шторм, в течение которого в атмосфере Земли сгорает, по меньшей мере, 1000 метеоров в час. Астрономы в 1966 году наблюдали захватывающее зрелище: в атмосферу Земли врезались остатки кометы со скоростью тысячи метеоров в минуту во время 15-минутного периода. Последний метеорный шторм Леониды прошел в 2002 году.

Комета Темпеля-Туттля была обнаружена дважды самостоятельно - в 1865 и 1866 году Эрнст Темпелем и Горацием Таттлем соответственно.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Так как Эрнст Темпель и Гораций Туттль обнаружили ее, комета названа в их честь. Буква "Р" означает, что комета Темпеля-Туттля является короткопериодической кометой. Короткопериодические кометы имеют орбитальный период менее 200 лет.

Комета Галлея

Комета 1P/Галлея, пожалуй, является самой известной кометой, за которой наблюдают уже в течении тысячелетий. Впервые комета упоминает Галлеем в гобелене Байе, в котором рассказывается о битве при Гастингсе в 1066 году.

Комете Галлея требуется около 76 лет, чтобы совершить один полный оборот вокруг Солнца. В последний раз комета была замечена с Земли 1986 году. В том же году, международная армада космических аппаратов сошлись на кометы, чтобы собрать как можно больше данных о ней.

Комета Галлея в 1986 году

Комета не прилетит внутрь Солнечной системы раньше 2061 года. Каждый раз, когда комета Галлея возвращается к внутренней Солнечной системе, ее ядро распыляет лед и камень в космос. Этот поток мусора приводит к двум слабым метеорным потокам: эта-Аквариды в мае и Ориониды в октябре.

Размеры кометы Галлея: 16 х 8 х 8 км (10 х 5 х 5 миль). Это один из самых мрачных объектов в Солнечной системе. Комета имеет альбедо 0,03, что означает, что она отражает только 3% света, который падает на нее.

Первые наблюдения кометы Галлея теряются во времени, более 2200 лет назад. Тем не менее, в 1705 году, Эдмонд Галлей изучал орбиты ранее наблюдаемых комет и отметил некоторые, которые, как, оказалось, появлялись вновь и вновь каждые 75-76 лет. На основании сходства орбит, он предложил, что это была на самом деле и та же комета, и правильно предсказал следующее возвращение в 1758 году.

Кометы, как правило, названы по имени их первооткрывателя или именем обсерватории/телескопа, используемого в открытие. Эдмонд Галлей правильно предсказал возвращение этой кометы – первое в своем роде предсказание и именно поэтому комета названа в его. Буква "Р" означает, что комета Галлея является коротклпериодической кометой. Короткопериодические кометы имеют орбитальный период менее 200 лет.

Комета С/2013 US10 (Каталина)

Комета С / 2013 US10 (Каталина) является кометой из Облака Оорта, открытая 31 октября 2013 в обсерватории Catalina Sky Survey с видимой звездной величиной 19, используя 0,68-метровый (27 дюймовый) телескоп Шмидта-Кассегрена. По состоянию на сентябрь 2015 года комета обладает видимой звездной величиной 6.

При обнаружении Каталины 31 октября 2013 года при предварительном определении ее орбиты были использованы наблюдения другого объекта, сделанные 12 сентября 2013 года, что дало неправильный результат, предполагающий орбитальный период кометы, равный всего 6 годам. Но 6 ноября 2013 года при более длительном наблюдении дуги от 14 августа до 4 ноября стало очевидно, что первый результат 12 сентября был получен на другом объекте.

К началу мая 2015 года комета имела видимую звездную величину 12 и имела удаление 60 градусов от Солнца, поскольку она передвинулась дальше в южном полушарии. Комета пришла к солнечному соединению 6 ноября 2015 года, когда она имела звездную величину около 6. Комета подошла к перигелию (ближайшее приближение к Солнцу) 15 ноября 2015 года на расстоянии 0,82 а.е. от Солнца и имела скорость 46,4 км / с (104,000 миль в час) по отношению к Солнцу, что немного больше, чем скорость удаления Солнца на таком расстоянии. Комета Каталина пересекла небесный экватор 17 декабря 2015 года и стала объектом северной полусферы. 17 января 2016 года комета пройдет в 0,72 астрономической единицы (108,000,000 км; 67,000,000 миль) от Земли и должна иметь звездную величину 6, и находится в созвездии Большой Медведицы.

Объект С / 2013 US10 является динамически новым. Он пришел из Облака Оорта из слабосвязанной хаотической орбиты, которая может легко возмущаться галактическими приливами и попутными звездами. Перед входом в планетарную область (в районе 1950 года), комета С / 2013 US10 (Каталина) имела орбитальный период в несколько миллионов лет. После выхода из планетарной области (в районе 2050 года), она будет на траектории выброса.

Комета Каталина носит имя обсерватории Catalina Sky Survey, которая и открыла её 31 октября 2013 года.

Комета C/2011 L4 (PANSTARRS)

C/2011 L4 (PANSTARRS) – это непериодическая комета, открытая в июне 2011 года. Невооруженным глазом ее смогли заметить только в марте 2013 года, когда она находилась вблизи перигелия.

Ее обнаружили при помощи телескопа Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), расположенного вблизи вершины Халикана на острове Мауи на Гавайях. Комете C/2011 L4 вероятно потребовались миллионы лет, чтобы добраться из облака Оорта. После выхода из планетарной области Солнечной системы, орбитальный период пост-перигелия (эпоха 2050) оценивается примерно в 106000 лет. Созданное из пыли и газа, ядро этой кометы составляет около 1 км (0.62 мили) в диаметре.

Комета C/2011 L4 была на расстоянии в 7.9 а.е. от Солнца и имела блеск в 19 зв. вел., когда ее обнаружили в июне 2011 года. Но уже в начале мая 2012 года она оживилась до 13.5 зв. вел., и это было заметно визуально при использовании большого любительского телескопа с темной стороны. По состоянию на октябрь 2012 года кома (расширение разреженной пылевой атмосферы) составляла около 120000 километров (75000 миль) в диаметре. Без оптической помощи C/2011 L4 была замечена 7 февраля 2013 года и имела 6 зв. вел. Комету PANSTARRS наблюдали с обоих полушарий в первые недели марта, а ближе всего к Земле она прошла 5 марта 2013 года на расстоянии 1.09 а.е. К перигелии (максимальное приближение к Солнцу) она приблизилась 10 марта 2013 года.

Предварительные оценки предсказывали, что C/2011 L4 будет ярче, имея примерно 0 зв. вел. (примерная яркость Альфа Центавры А или Веги). Оценки октября 2012 года предсказывали, что она могла быть ярче, имея -4 зв. вел. (примерно соответствует Венере). В январе 2013 года произошел заметный спад осветления, который дал повод предположить, что она может быть ярче, имея только +1 зв. вел. В феврале кривая блеска показала дальнейшее замедление, предполагая перигелию с +2 зв. вел.

Тем не менее, исследование с использованием вековой кривой света указывает на то, что комета C/2011 L4 испытала «случай торможения», когда находилась на расстоянии 3.6 а.е. от Солнца и имела 5.6 а.е. Скорость роста яркости уменьшился, а звездная величина в перигелии была предсказана как +3.5. Для сравнения, на таком же расстоянии перигелии комета Галлея будет иметь -1.0 зв. вел. В том же исследовании сделали вывод, что C/2011 L4 – очень молодая комета и принадлежит к классу «детских» (то есть те, чей фотометрический возраст меньше 4-х лет кометы).

Изображение кометы Panstarrs, сделанное в Испании

Комета C/2011 L4 достигла перигелия в марте 2013 года, и, согласно оценкам различных наблюдателей со всей планеты, имела фактический пик в +1 зв. вел. Однако ее низкое расположение над горизонтом затрудняет возможность получить определенные данные. Этому способствовали отсутствие подходящих опорных звезд и непроходимость дифференциальных поправок атмосферной экстинкции. По состоянию на середину марта 2013 года из-за яркости сумерек и низкого положения в небе, C/2011 L4 лучше всего было видно в бинокль спустя 40 минут после захода Солнца. 17-18 марта комета была недалеко от звезды Альгениб с 2.8 зв. вел. 22 апреля рядом с Бета Кассиопеи, а 12-14 мая недалеко от Гамма Цефея. Комета C/2011 L4 продолжала двигаться на север до 28 мая.

Комета PANSTARRS носит имя телескопа Pan-STARRS, при помощи которого она была открыта в июне 2011 года.

Окружающее нас космическое пространство постоянно находится в движении. Следом за движением галактических объектов, таких как галактики и скопления звезд, по четко определенной траектории двигаются и другие космические объекты, среди которых астроиды и кометы. За некоторыми из них человек наблюдает уже не одну тысячу лет. Вместе с постоянными объектами на нашем небосклоне, Луной и планетами, наш небосвод часто посещают кометы. Со времен своего появления человечество не раз могло наблюдать кометы, приписывая этим небесным телам самые разнообразные толкования и объяснения. Ученые долгое время не могли дать четких объяснений, наблюдая астрофизические явления, которые сопровождают полет столь стремительного и яркого небесного тела.

Характеристика комет и их отличие друг от друга

Несмотря на то, что кометы — явление для космоса достаточно распространенное, видеть летящую комету повезло далеко не всем. Все дело в том, что по космическим меркам полет этого космического тела — явление часто. Если сравнивать период обращения подобного тела, ориентируясь на земное время – это довольно большой промежуток времени.

Кометы – это небольшие по размерам небесные тела, двигающиеся в космическом пространстве по направлению к главной звезде солнечной системы, нашему Солнцу . Описания наблюдаемых с Земли полетов подобных объектов наводят на мысль, что все они являются частью солнечной системы, некогда участвующие в ее формировании. Другими словами, каждая комета – это остатки космического материала, используемого при образовании планет. Практически все известные кометы на сегодняшний день входят в состав нашей звездной системы. Аналогично планетам эти объекты подчиняются тем же законам физики. Однако их движение в космосе имеет свои отличия и особенности.

Основное отличие комет от других космических объектов заключается в форме их орбит. Если планеты двигаются в правильном направлении, по круговым орбитам и лежат в одной плоскости, то комета несется в пространстве совершенно иначе. Эта яркая звезда, внезапно появившаяся на небосклоне, может двигаться в правильном или в обратном направлении, по эксцентрической (вытянутой) орбите. Такое движение влияет на скорость кометы, которая является самой высокой среди показателей всех известных планет и космических объектов нашей Солнечной системы, уступая только нашему главному светилу.

Скорость движения кометы Галлея при прохождении рядом с Землей составляет 70 км/с.

Не совпадает и плоскость орбиты кометы с эклиптической плоскостью нашей системы. Каждая небесная гостья имеет свою орбиту и соответственно свой период обращения. Именно этот факт и лежит в основе классификации комет по периоду обращения. Существует два вида комет:

  • короткопериодические с периодом обращения от двух, пяти лет до пары сотен лет;
  • долгопериодические кометы, совершающие оборот по орбите с периодом от двух, трех сотен лет до миллиона лет.

К первым относятся небесные тела, которые достаточно быстро двигаются по своей орбите. Среди астрономов принято обозначать такие кометы префиксами Р/. В среднем период обращения короткопериодических комет составляет менее 200 лет. Это самый распространенный вид комет, встречаемый в нашем околоземном пространстве и пролетающий в поле зрения наших телескопов. Самая известная комета Галлея совершает свой бег вокруг Солнца за 76 лет. Другие кометы гораздо реже посещают нашу солнечную систему, и мы редко когда становимся свидетелями их появления. Их период обращения составляет сотни, тысячи и миллионы лет. Долгопериодические кометы обозначаются в астрономии префиксом С/.

Считается, что короткопериодические кометы стали заложницами силы притяжения крупных планет солнечной системы, сумевших вырвать этих небесных гостей из крепких объятий дальнего космоса в районе пояса Койпера. Долгопериодические кометы — это более крупные небесные тела, прилетающие к нам из дальних уголков облака Оорта. Именно эта область космоса является родиной всех комет, которые регулярно наведываются с визитом к своей звезде. Через миллионы лет с каждым последующим визитом в солнечную систему размеры долгопериодических комет уменьшаются. В результате такая комета может перейти в разряд короткопериодических, сократив срок своей космической жизни.

За время наблюдений за космосом зафиксированы все известные до сегодняшнего дня кометы. Рассчитаны траектории этих небесных тел, время их очередного появления в пределах солнечной системы и установлены приблизительные размеры. Одно из них даже продемонстрировало нам свою гибель.

Падение в июле 1994 году короткопериодической кометы Шумейкера-Леви 9 на Юпитер стало ярчайшим событием в истории астрономических наблюдений за околоземным пространством. Комета вблизи Юпитера раскололась на фрагменты. Самый крупный из них имел размеры более двух километров. Падение небесной гостьи на Юпитер продолжалось в течение недели, с 17 по 22 июля 1994 года.

Теоретически возможно столкновение Земли с кометой, однако из того числа небесных тел, которые нам известны на сегодняшний день, ни одно из них во время своего путешествия не пересекается с траекторией полета нашей планеты. Сохраняется угроза появления на пути нашей Земли долгопериодической кометы, которая еще вне зоны досягаемости средств обнаружения. В такой ситуации столкновение Земли с кометой может обернуться катастрофой глобального масштаба.

Всего известно более 400 короткопериодических комет, которые регулярно посещают нас. Большое количество долгопериодических комет прилетает к нам из дальнего, открытого космоса, рождаясь в 20–100 тыс. а.е. от нашей звезды. Только в XX веке таких небесных тел зафиксировано более 200. Наблюдать такие удаленные космические объекты в телескоп было практически невозможно. Благодаря телескопу Хаббл появились снимки уголков космоса, на которых удалось обнаружить полет долгопериодической кометы. Этот далекий объект выглядит, как туманность, украшенная хвостом длиной в миллионы километров.

Состав кометы, ее строение и главные особенности

Главная часть этого небесного тела — ядро кометы. Именно в ядре сосредоточена основная масса кометы, которая варьируется от несколько сотен тысяч тонн до миллиона. По своему составу небесные красавицы — ледяные кометы, поэтому при близком рассмотрении являются грязными ледяными комками больших размеров. По своему составу ледяная комета представляет собой конгломерат твердых фрагментов различных размеров, скрепленных космическим льдом. Как правило, лед ядра кометы — это водяной лед с примесью аммиака и углекислоты. Твердые фрагменты состоят из метеорного вещества и могут иметь размеры, сравнимые с частицами пыли или, наоборот, иметь размеры в несколько километров.

В научном мире принято считать, что кометы являются космическими доставщиками воды и органических соединений в открытом космосе. Изучая спектр ядра небесной путешественницы и газовый состав ее хвоста, стала понятна ледяная природа этих комических объектов.

Интересны процессы, которые сопровождают полет кометы в космическом пространстве. Большую часть своего пути, находясь на огромном расстоянии от звезды нашей солнечной системы, эти небесные странницы не видны. Сильно вытянутые эллиптические орбиты способствуют этому. По мере приближения к Солнцу комета нагревается, в результате чего запускается процесс сублимации космического льда, составляющего основу ядра кометы. Говоря понятным языком, ледяная основа кометного ядра, минуя этап плавления, начинает активно испаряться. Вместо пыли и льда под воздействием солнечного ветра молекулы воды разрушаются и образуют вокруг ядра кометы кому. Это своеобразная корона небесной путешественницы, зона, состоящая из молекул водорода. Кома может иметь огромные размеры, растянувшись на сотни тысяч, миллионы километров.

По мере того как космический объект приближается к Солнцу, скорость кометы стремительно растет, начинают действовать не только центробежные силы и гравитация. Под воздействием притяжения Солнца и негравитационных процессов испаряющиеся частицы кометного вещества образуют хвост кометы. Чем ближе объект к Солнцу, тем интенсивнее, больше и ярче хвост кометы, состоящий из разреженной плазмы. Эта часть кометы наиболее заметна и видимая с Земли считается у астрономов одним из самых ярких астрофизических явлений.

Пролетая достаточно близко от Земли, комета позволяет детально рассмотреть всю ее структуру. За головой небесного тела обязательно тянется шлейф, состоящий из пыли, газа и метеорного вещества, которое чаще всего и попадает в дальнейшем на нашу планету в виде метеоров.

История комет, полет которых наблюдался с Земли

Рядом с нашей планетой постоянно пролетают различные космические объекты, озаряя своим присутствием небосвод. Своим появлением кометы часто вызывали у людей необоснованный страх и ужас. Древние оракулы и звездочеты связывали появление кометы с началом опасных жизненных периодов, с наступлением катаклизмов планетарного масштаба. Несмотря на то, что хвост кометы составляет всего миллионную часть массы небесного тела – это наиболее яркая часть космического объекта, дающая 0,99% света в видимом спектре.

Первой кометой, которую сумели обнаружить в телескоп, стала Большая комета 1680 года, более известная как комета Ньютона. Благодаря появлению этого объекта ученому удалось получить подтверждения своих теорий относительно законов Кеплера.

За время наблюдений за небесной сферой человечеству удалось создать список наиболее частых космических гостей, регулярно посещающих нашу солнечную систему. В этом списке на первом месте определенно стоит комета Галлея – знаменитость, которая озарила нас своим присутствием уже в тридцатый раз. Это небесное тело наблюдал еще Аристотель. Ближайшая комета получила свое название благодаря стараниям астронома Галлея в 1682 году, рассчитавшего ее орбиту и следующее появление на небе. Наша спутница с регулярностью 75-76 лет пролетает в зоне нашей видимости. Характерной особенностью нашей гостьи является то, что, несмотря на яркий след в ночном небе, ядро кометы имеет практически темную поверхность, напоминая собой обычный кусок каменного угля.

На втором месте по популярности и знаменитости находится комета Энке. Это небесное тело имеет один из самых коротких периодов обращения, который равняется 3,29 земных года. Благодаря этой гостье мы можем регулярно наблюдать на ночном небе метеорный поток Тауриды.

Другие наиболее знаменитые последние кометы, осчастливившие нас своим появлением, имеют также громадные периоды обращения. В 2011 году была открыта комета Лавджоя, сумевшая пролететь в непосредственной близости от Солнца и при этом остаться целой и невредимой. Эта комета относится к долгопериодическим, с периодом обращения 13 500 лет. С момента своего обнаружения эта небесная гостья будет пребывать в области солнечной системы до 2050 года, после чего на долгие 9000 лет покинет пределы ближнего космоса.

Самым ярким событием начала нового тысячелетия, в прямом и в переносном смысле, стала комета Макнота, открытая в 2006 году. Это небесное светило можно было наблюдать даже невооруженным глазом. Следующее посещение нашей солнечной системы этой яркой красавицей намечено через 90 тыс. лет.

Следующая комета, которая может посетить наш небосвод в ближайшее время, вероятно будет 185P/Петрю. Ее станет заметно, начиная с 27 января 2019 года. На ночном небе это светило будет соответствовать яркости 11 звездной величины.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Комета (от др.-греч. волосатый, косматый) - небольшое небесное тело, имеющее туманный вид, обращающееся вокруг Солнца по коническому сечению с весьма растянутой орбитой. При приближении к Солнцу комета образует кому и иногда хвост из газа и пыли.

Кометы подразделяют по периоду обращения на:

1. Короткопериодические
На данный момент обнаружено более 400 короткопериодических комет. Из них около 200 наблюдалось в более чем одном прохождении перигелия. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют «хвостов», но иногда имеют еле видимую «кому», окружающую «ядро»; вместе их называют «головой» кометы. С приближением к Солнцу голова увеличивается и появляется хвост. Многие из них входят в так называемые семейства. Например, большинство самых короткопериодических комет (их полный оборот вокруг Солнца длится 3-10 лет) образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).

Семейства:
- семейство Юпитера
- семейство Сатурна
- семейство Урана
- семейство Нептуна

При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из «свежих» комет.
Пополнение короткопериодических комет происходит в результате их «захвата» планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый «внутренним облаком Оорта». В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака.
Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.

2. Долгопериодические
Предположительно, долгопериодические кометы залетают к нам из Облака Оорта, в котором находится огромное количество кометных ядер. Тела, находящиеся на окраинах Солнечной системы, как правило, состоят из летучих веществ (водяных, метановых и других льдов), испаряющихся при подлёте к Солнцу. Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами.
К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 веке наблюдалось около 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно.
Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20–100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 10 12 , а полная масса – в 1–100 масс Земли. Внешняя граница «кометного облака» Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов. Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать «новые» кометы.

Кометы, прибывающие из глубины космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров. Ядро кометы представляет собой тело из твёрдых частиц и льда, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.
Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было увидеть невооружённым глазом. Самые заметные из них иногда называют «великими кометами».
Многие из наблюдаемых нами метеоров («падающих звёзд») имеют кометное происхождение. Это потерянные кометой частицы, которые сгорают при попадании в атмосферу планет.

Орбита и скорость

Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (υc) на расстоянии a. Скорость ухода из гравитационного поля Солнца по параболической орбите (υp) в раз √2 больше круговой скорости на этом расстоянии. Если скорость кометы меньше υp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит υp, то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите. Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго.


КОМЕТЫ В СОЛНЕЧНОЙ СИСТЕМЕ


На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая – 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея – 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.
Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой «послеполуденной» стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.

Номенклатура комет


За минувшие столетия правила именования комет неоднократно меняли и уточняли. До начала XX века большинство комет называлось по году их обнаружения, иногда с дополнительными уточнениями относительно яркости или сезона года, если комет в этом году было несколько. Например, «Большая комета 1680 года», «Большая сентябрьская комета 1882 года», «Дневная комета 1910 года» («Большая январская комета 1910 года»).
После того как Галлей доказал, что кометы 1531, 1607 и 1682 года - это одна и та же комета, и предсказал её возвращение в 1759 году, данная комета стала называться Кометой Галлея. Также, вторая и третья известные периодические кометы получили имена Энке и Биэлы в честь ученых, вычисливших орбиту комет, несмотря на то, что первая комета наблюдалась ещё Мешеном, а вторая - Мессье в XVIII в. Позже, периодические кометы обычно называли в честь их первооткрывателей. Кометы, наблюдавшиеся лишь в одном прохождении перигелия, продолжали называть по году появления.
В начале XX века, когда открытия комет стали частым событием, было выработано соглашение об именовании комет, которое остается актуальным до сих пор. Комета получает имя только после того, как её обнаружат три независимых наблюдателя. В последние годы, множество комет открывается с помощью инструментов, которые обслуживают большие команды ученых. В таких случаях кометы именуются по инструментам. Например, комета C/1983 H1 (IRAS - Араки - Олкока) была независимо открыта спутником IRAS и любителями астрономии Гэнъити Араки (Genichi Araki) и Джорджем Олкоком (George Alcock). В прошлом, если одна группа астрономов открывала несколько комет, к именам добавляли номер (но только для периодических комет), например, кометы Шумейкеров-Леви 1-9. Сейчас рядом инструментов открывается множество комет, что сделало такую систему непрактичной. Вместо этого используют специальную систему обозначения комет.
До 1994 года кометам сначала давали временные обозначения, состоявшие из года их открытия и латинской строчной буквы, которая указывает порядок их открытия в данном году (например, комета 1969i была девятой кометой, открытой в 1969 году). После того, как комета проходила перигелий, её орбита надежно устанавливалась, после чего комета получала постоянное обозначение, состоявшее из года прохождения перигелия и римского числа, указывавшего на порядок прохождения перигелия в данном году. Так комете 1969i было дано постоянное обозначение 1970 II (вторая комета, прошедшая перигелий в 1970 году).
По мере увеличения числа открытых комет эта процедура стала очень неудобной. В 1994 году Международный астрономический союз одобрил новую систему обозначений комет. Сейчас в название кометы входит год открытия, буква, обозначающая половину месяца, в котором произошло открытие, и номер открытия в этой половине месяца. Эта система похожа на ту, которая используется для именования астероидов. Таким образом, четвёртая комета, открытая во второй половине февраля 2006 года получает обозначение 2006 D4. Перед обозначением кометы ставят префикс, указывающий на природу кометы. Используются следующие префиксы:

P/ - короткопериодическая комета (то есть комета, чей период меньше 200 лет, или которая наблюдалась в двух или более прохождениях перигелия);
C/ - долгопериодическая комета;
X/ - комета, достоверную орбиту для которой не удалось вычислить (обычно для исторических комет);
D/ - кометы разрушились или были потеряны;
A/ - объекты, которые были ошибочно приняты за кометы, но реально оказавшиеся астероидами.

Например, комета Хейла - Боппа получила обозначение C/1995 O1. Обычно после второго замеченного прохождения перигелия периодические кометы получают порядковый номер. Так, комета Галлея впервые была обнаружена в 1682 году. Её обозначение в том появлении по современной системе - 1P/1682 Q1. Кометы, которые впервые были обнаружены как астероиды, сохраняют буквенное обозначение. Например, P/2004 EW38 (Catalina-LINEAR).

Строение комет


Комета состоит:
1. Ядро
2. Кома
3. Хвост

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.
Ядра комет – это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.
Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.
Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.

Атомы

Молекулы

Ионы

ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТЫ


Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров («падающих звезд»). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди.
Расскажем поподробнее о каждом элементе строения кометы:

ЯДРО

Ядро - твёрдая часть кометы, в которой сосредоточена почти вся её масса. Ядра комет на данный момент недоступны телескопическим наблюдениям, поскольку скрыты непрерывно образующейся светящейся материей.
По наиболее распространённой модели Уиппла ядро - смесь льдов с вкраплением частиц метеорного вещества (теория «грязного снежка»). При таком строении слои замороженных газов чередуются с пылевыми слоями. По мере нагревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет.
Согласно исследованиям, проведённым с помощью запущенной в 2005 году американской автоматической станции Deep Impact, ядро состоит из очень рыхлого материала и представляет собой ком пыли с порами, занимающими 80% его объёма.
Ядра комет состоят изо льда с добавлением космической пыли и замороженных летучих соединений: монооксида и диоксида углерода, метана, аммиака.


КОМЕТЫ В СОЛНЕЧНОЙ СИСТЕМЕ


Ядро имеет довольно низкое альбедо, около 4%. Согласно основной гипотезе, это объясняется наличием пылевой матрицы, образующейся при испарении льда, и накоплении пылевых частиц на поверхности, подобно тому, как нарастает слой поверхностной морены при отступании ледников на Земле. Исследование кометы Галлея зондом «Джотто» выявило, что она отражает только 4% от падающего на неё света, а «Deep Space 1» измерил альбедо кометы Борелли, которое составило только 2,5-3,0%. Также существуют предположения, что поверхность покрыта не пылевой матрицей, а матрицей из сложных органических соединений, тёмных, как дёготь или битум. Гипотетически, на некоторых кометах с течением времени активность может сойти на нет, с прекращением сублимации.
На настоящий момент мало комет, ядра которых наблюдались непосредственно. Использование космических аппаратов позволило исследовать их кому и ядра непосредственно, и получить крупноплановые снимки.

ВСТРЕЧА С КОМЕТОЙ

- Комета Галлея стала первой кометой, исследованной с помощью космических аппаратов. 6 и 9 марта 1986 года «Вега-1» и «Вега-2» прошли на расстоянии 8890 и 8030 км от ядра кометы. Они передали 1500 снимков внутреннего гало и, впервые в истории, фотографии ядра, и провели ряд инструментальных наблюдений. Благодаря их наблюдениям удалось скорректировать орбиту следующего космического аппарата - зонда Европейского космического агентства «Джотто», благодаря чему удалось 14 марта подлететь ещё ближе, на расстояние 605 км. Также свой вклад в изучение кометы внесли и два японских аппарата: «Суйсэй» (пролёт 8 марта, 150 тысяч км) и «Сакигакэ» (10 марта, 7 млн км, использовался для наведения предыдущего аппарата). Все эти 5 космических аппаратов, исследовавших комету Галлея во время её прохода в 1986, получили неофициальное название «Армада Галлея».
- С кометой Борелли 21 сентября 2001 года сблизился космический аппарат «Deep Space 1», получив наилучшие на тот момент снимки ядра кометы.
- Комета Вильда 2 в 2004 году была исследована космическим аппаратом Стардаст. Во время сближения на расстояние до 240 км был выяснен диаметр ядра (5 км), зафиксированы 10 струй газа (джетов), извергающихся с его поверхности.
- Комета Темпеля была основным объектом миссии НАСА «Deep impact». 4 июля 2005 года выпущенный зонд «Импактор» столкнулся с ядром, приведя к выбросу горных пород объёмом около 10 тыс. тонн.
- Комета Хартли была вторым объектом исследования миссии НАСА Deep impact, сближение произошло 4 ноября 2010 до расстояния 700 км. Были замечены мощные джеты, в которых отмечались крупные обломки вещества кометы размером с баскетбольный мяч.
- На орбиту кометы Чурюмова-Герасименко в 2014 году вышел космический аппарат «Розетта», в ноябре 2014 планируется приземление спускаемого модуля на ядро.

ВСТРЕЧА С КОМЕТОЙ

Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо).
Сублимация - переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5–3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини – Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C 2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот «составной» лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.

КОМА

Пылинки и газ из нейтральных молекул образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.

Кома светлая туманная оболочка чашеобразной формы, состоящая из газов и пыли. Кома вместе с ядром составляет голову кометы. Чаще всего кома состоит из трёх основных частей:
- Внутренняя кома (молекулярная, химическая и фотохимическая). Здесь происходят наиболее интенсивные физико-химически процессы.
- Видимая кома (кома радикалов).
- Ультрафиолетовая кома (атомная).


Снимок кометы C/2001 Q4 (NEAT)

КОМЕТЫ В СОЛНЕЧНОЙ СИСТЕМЕ


Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H 2 O. Фотодиссоциация разрушает H 2 O на H и OH, а затем OH – на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют водородную корону, видимый размер которой часто превосходит солнечный диск.

ХВОСТ

Хвост кометы - вытянутый шлейф из пыли и газа кометного вещества, образующийся при приближении кометы к Солнцу и видимый благодаря рассеянию на нём солнечного света. Обычно направлен от Солнца.
При приближении кометы к Солнцу с поверхности её ядра начинают сублимироваться летучие вещества с малой температурой кипения, такие как вода, моноксид, оксид углерода, метан, азот и, возможно, другие замёрзшие газы. Этот процесс и приводит к образованию комы. Испарение этого грязного льда высвобождает пылевые частицы, которые относятся газом от ядра. Молекулы газов в коме поглощают солнечный свет и переизлучают его затем на разных длинах волн (это явление называется флуоресценцией), а пылевые частицы рассеивают солнечный свет в различных направлениях без изменения длины волны. Оба эти процесса приводят к тому, что кома становится видимой для стороннего наблюдателя.
Несмотря на то, что в хвосте и коме сосредоточено менее одной миллионной доли массы кометы, почти 99,9% свечения, наблюдаемого нами при прохождении кометы по небу, происходит именно из этих газовых образований. Дело в том, что ядро очень компактно и имеет низкий коэффициент отражения (альбедо).
Хвосты комет различаются длиной и формой. У некоторых комет они тянутся через всё небо. Например, хвост кометы, появившейся в 1944 году, был длиной 20 млн км. А комета C/1680 V1 имела хвост, протянувшийся на 240 млн км. Также были зафиксированы случаи отделения хвоста от кометы (C/2007 N3 (Лулинь)).
Хвосты комет не имеют резких очертаний и практически прозрачны - сквозь них хорошо видны звёзды, - так как образованы из чрезвычайно разрежённого вещества (его плотность гораздо меньше, чем плотность газа, выпущенного из зажигалки). Состав его разнообразен: газ или мельчайшие пылинки, или же смесь того и другого. Состав большинства пылинок схож с астероидным материалом солнечной системы, что выяснилось в результате исследования кометы 81P/Вильда космическим аппаратом «Стардаст». По сути, это «видимое ничто»: человек может наблюдать хвосты комет только потому, что газ и пыль светятся. При этом свечение газа связано с его ионизацией ультрафиолетовыми лучами и потоками частиц, выбрасываемых с солнечной поверхности, а пыль просто рассеивает солнечный свет.
Теорию хвостов и форм комет разработал в конце XIX века русский астроном Фёдор Бредихин. Ему же принадлежит и классификация кометных хвостов, использующаяся в современной астрономии.

Бредихин предложил относить хвосты комет к основным трём типам:
- I тип. Прямые и узкие, направленные прямо от Солнца;
- II тип. Широкие и немного искривлённые, уклоняющиеся от Солнца;
- III тип. Короткие, сильно уклонённые от центрального светила.

Астрономы объясняют столь различные формы кометных хвостов следующим образом. Частицы, из которых состоят кометы, обладают неодинаковым составом и свойствами и по-разному отзываются на солнечное излучение. Таким образом, пути этих частиц в пространстве «расходятся», и хвосты космических путешественниц приобретают разные формы.
Скорость частицы, вылетевшей из ядра кометы складывается из скорости, приобретённой в результате действия Солнца - она направлена от Солнца к частице, и скорости движения кометы, вектор которой касателен к её орбите, поэтому частицы, вылетевшие к определённому моменту, в общем случае расположатся не на прямой линии, а на кривой, называемой синдинамой. Синдинама и будет представлять собой положение хвоста кометы в этот момент времени. При отдельных резких выбросах частицы образуют отрезки или линии на синдинаме под углом к ней, называемые синхронами. Насколько хвост кометы будет отличаться от направления от Солнца к комете, зависит от массы частиц и действия Солнца.

Действие солнечного излучения на кому приводит к образованию хвоста кометы. Но и здесь пыль и газ ведут себя по-разному. Ультрафиолетовое излучение солнца ионизирует часть молекул газов, и давление солнечного ветра, представляющего собой поток испускаемых Солнцем заряженных частиц, толкает ионы, вытягивая кому в длинный хвост, который может иметь протяжённость более чем 100 миллионов километров. Изменения в потоке солнечного ветра могут приводить к наблюдаемым быстрым изменениям вида хвоста и даже полному или частичному обрыву. Ионы разгоняются солнечным ветром до скоростей в десятки и сотни километров в секунду, много больших, чем скорость орбитального движения кометы. Поэтому их движение направлено почти точно в направлении от Солнца, как и формируемый ими хвост I типа. Ионные хвосты имеют обусловленное флуоресценцией голубоватое свечение. На кометную пыль солнечный ветер почти не действует, её выталкивает из комы давление солнечного света. Пыль разгоняется светом гораздо слабее чем ионы солнечным ветром, поэтому её движение определяется начальной орбитальной скоростью движения и ускорением под действием давления света. Пыль отстаёт от ионного хвоста и формирует изогнутые в направлении орбиты хвосты II или III типа. Хвосты II типа формируются равномерным потоком пыли с поверхности. Хвосты III типа являются результатом кратковременного выброса большого облака пыли. Вследствие разброса ускорений, приобретаемых пылинками разного размера под действием силы давления света, начальное облако также растягивается в хвост, обычно изогнутый ещё сильнее, чем хвост II типа. Пылевые хвосты светятся рассеянным красноватым светом.
Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок.
Плазменный хвост в десятки и даже сотни миллионов километров длиной – это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H 2 O+, OH+, CO+, CO 2 +) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO+. Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х.Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини – Циннера и Галлея в 1985 и 1986.
В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью около 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс «захвата»; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы.
Замечательное зрелище представляет «обрыв хвоста». Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.
Антихвост - это термин, который используется в астрономии для описания одного из трёх видов хвостов, которые появляются у кометы при её приближении к Солнцу. Особенность этого хвоста заключается в том, что в отличие от двух других хвостов, пылевого и газового, он направлен в сторону Солнца, а не от него, поэтому он геометрически противоположен другим хвостам. Антихвост состоит из крупных частиц пыли, которые, в силу своей массы и размера, слабо подвержены влиянию солнечного ветра и, как правило, остаются в плоскости орбиты кометы, в конечном итоге, принимая форму диска. Из-за довольно малой концентрации частиц пыли увидеть этот диск в обычных условиях практически невозможно. Поэтому его можно зафиксировать только с ребра, когда он достаточно ярок для наблюдения. Это становится возможным в короткий промежуток времени, когда Земля пересекает плоскость орбиты кометы. В результате диск становится виден в форме небольшого хвоста, направленного в сторону от Солнца.
Поскольку частицы пыли принимают форму диска, то вполне естественно, что антихвост существует не только впереди, но и позади, и по бокам кометы. Но по бокам кометы он не виден из-за кометного ядра, а позади - теряется за более плотными и яркими пылевым и газовым хвостами.
Большинство проходящих комет слишком малы, чтобы у них можно было различить антихвост, но есть и достаточно крупные для этого кометы, например, комета C/1995 O1 (Хейла - Боппа) в 1997.

Выродившаяся комета


Выродившаяся комета - это комета, которая потеряла большую часть своих летучих веществ и поэтому при приближении к Солнцу уже не образующая хвост или кому. Все летучие вещества уже испарились с ядра кометы, а оставшиеся породы состоят в основном из относительно тяжёлых нелетучих элементов, сходных с теми, которые распространены на поверхности астероидов. Вымершие кометы представляют собой небольшие тёмные небесные тела, которые очень трудно обнаружить даже в самые сильные телескопы.
Чтобы комета превратилась в вымершую, ей совсем не обязательно терять все свои летучие вещества: достаточно лишь, чтобы они оказались запечатанными под слоем осадочных нелетучих соединений. Такие слои могут образовываться, если в составе поверхности кометы есть нелетучие соединения. Когда газы и другие летучие вещества испаряются, нелетучие соединения осаждаются вниз и, накапливаясь, образуют корку толщиной в несколько сантиметров, которая, в конце концов, полностью перекрывает доступ солнечной энергии в глубинные слои. В результате солнечное тепло уже не может пробиться сквозь эту корку и нагреть их до температуры, при которой они начали бы испаряться, - комета превращается в вымершую. Такие типы комет ещё иногда называют скрытыми или спящими. Примером такого тела может являться астероид (14827) Гипнос.
Термин спящая комета также используется для описания неактивных комет, которые могут стать активными, если окажутся достаточно близко к Солнцу. Например, при прохождении перигелия в 2008 году значительно активизировалась кометная активность астероида (52872) Окироя. А астероид (60558) Эхекл, после того как у него было зафиксировано появление комы, получил ещё и кометное обозначение 174P/Echeclus.

Когда астероиды и кометы были выделены в два различных класса, долгое время не были сформулированы основные отличия этих классов друг от друга. Разрешить этот вопрос удалось лишь в 2006 году на 26-й генеральной ассамблее в Праге. Основным отличием между астероидом и кометой было признано то, что комета в процессе приближения к Солнцу формирует вокруг себя кому из-за сублимации льда вблизи поверхности под действием солнечного излучения, астероид же комы никогда не образует. В результате некоторые объекты получили сразу два обозначения, поскольку сначала они были классифицированы как астероиды, но потом, при обнаружении у них кометной активности, получили ещё и кометное обозначение. Ещё одно различие состоит в том, что кометы, как правило, имеют более вытянутые орбиты, чем большинство астероидов, - следовательно, «астероиды» с большим эксцентриситетом орбит, скорее всего, являются ядрами вымерших комет. Другой важный показатель - близость орбиты к Солнцу: предполагается, что большинство объектов, движущихся по близким к Солнцу орбитам, также являются вымершими кометами. Примерно 6% всех сближающихся с Землёй астероидов являются вымершими кометами, которые уже полностью истощили свои запасы летучих веществ. Вполне возможно, что все кометы рано или поздно теряют все свои летучие вещества и превращаются в астероиды.

Комета (от др.-греч. κομ?της , kom?t?s — «волосатый, косматый») — небольшое ледяное небесное тело, движущееся по орбите в Солнечной системе, которое частично испаряется при приближении к Солнцу, в результате чего возникает диффузная оболочка из пыли и газа, а также один или несколько хвостов.
Первое появление кометы, которое удалось зарегистрировать в хрониках, датируется 2296 годом до н.э. И сделала это женщина, жена императора Яо, у которого появился на свет сын ставший впоследствии императором Та-Ю, основателем династии Хиа. Именно с этого момента и следили за ночным небом китайские астрономы и лишь благодаря им, мы знаем об этой дате. С нее и начинает отсчет история кометной астрономии. Китайцы не только описывали кометы, но и наносили на звездную карту пути комет, что позволило современным астрономам отождествить самые яркие из их, проследить эволюцию их орбит и получить другую полезную информацию.
Невозможно не заметить на небе зрелища столь редкостного, когда на небе видно туманное светило, иногда настолько яркое, что может сверкать сквозь облака (1577 год), затмевая даже Луну. Аристотель в IV веке до н.э. объяснил явление кометы следующим образом: легкая, теплая, «сухая пневма» (газы Земли) поднимается к границам атмосферы, попадает в сферу небесного огня и воспламеняется - так образуются «хвостатые звезды». Аристотель утверждал, что кометы вызывают сильные бури, засуху. Его представления были общепризнанными в течение двух тысячелетий. В средние века кометы считались предвестниками войн и эпидемий. Так вторжение норманнов в Южную Англию в 1066 году связывали с появлением в небе кометы Галлея. С появлением в небе кометы ассоциировалось и падение Константинополя в 1456 году. Изучая появление кометы в 1577 году, Тихо Браге установил, что она движется далеко за орбитой Луны. Начиналось время исследования орбит комет...
Первым фанатиком, жаждущим открытия комет, был служащий Парижской обсерватории Шарль Мессье. В историю астрономии он вошел как составитель каталога туманностей и звездных скоплений, предназначавшегося для поиска комет, чтобы не принимать далекие туманные объекты за новые кометы. За 39 лет наблюдений Мессье открыл 13 новых комет! В первой половине XIX столетия среди «ловцов» комет особенно отличился Жан Понс. Сторож Марсельской обсерватории, а позднее ее директор, соорудил небольшой любительский телескоп и, следуя примеру своего соотечественника Мессье, занялся поисками комет. Дело оказалось столь увлекательным, что за 26 лет он открыл 33 новых кометы! Не случайно астрономы прозвали его «Кометным магнитом». Рекорд, установленный Понсом, до сих пор остается непревзойденным. Доступно наблюдениям порядка 50 комет. В 1861 году получен первый снимок кометы. Однако, согласно архивных данных в анналах Гарвардского университете обнаружена запись от 28 сентября 1858 года, в которой Георг Бонд сообщил о попытке получить фотографическое изображение кометы в фокусе 15" рефрактора! При выдержке 6" проработалась наиболее яркая часть комы размером 15 угловых секунд. Фотография не сохранилась.
Каталог кометных орбит 1999г содержит 1722 орбиты для 1688 кометных появлений, относящихся к 1036 различным кометам. С древнейших времен до наших дней замечено и описано уже около 2000 комет. За 300 лет после Ньютона вычислены орбиты более 700 из них. Общие результаты таковы. Большинство комет движется по эллипсам, умеренно или сильно вытянутым. Самым коротким маршрутом ходит комета Энке - от орбиты Меркурия до Юпитера и обратно за 3,3 года. Самая далекая из тех, что наблюдались дважды, - комета, открытая в 1788 г. Каролиной Гершель и вернувшаяся через 154 года с расстояния 57 а.е. В 1914 г. на побитие рекорда дальности пошла комета Делавана. Она удалится на 170 000 а.е. и "финиширует" через 24 млн лет.
На данный момент обнаружено более 400 короткопериодических комет . Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, приблизительно 50 самых короткопериодических комет (их полный оборот вокруг Солнца длится 3—10 лет) образуют семейство Юпитера . Немного малочисленнее семейства Сатурна , Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).
Земные наблюдения многих комет и результаты исследований кометы Галлея с помощью космических аппаратов в 1986г подтвердили гипотезу, высказанную впервые Ф. Уипплом в 1949г о том, что ядра комет представляют собой что-то вроде “грязных снежков” нескольких километров в поперечнике. По-видимому, они состоят из замерзших воды, двуокиси углерода, метана и аммиака с вмерзшей внутрь пылью и каменистым веществом. При приближении кометы к Солнцу лед под действием солнечного тепла начинает испаряться, а улетучивающийся газ образует вокруг ядра диффузную светящуюся сферу, называемую комой. Кома может достигать в поперечнике миллиона километров. Само по себе ядро слишком мало, чтобы его можно было непосредственно увидеть. Наблюдения в ультрафиолетовом диапазоне спектра, проведенные с космических аппаратов, показали, что кометы окружены огромными облаками водорода, размером во много миллионов километров. Водород получается в результате разложения молекул воды под действием солнечного излучения. В 1996г было обнаружено рентгеновское излучение кометы Хиякутаке, а впоследствии открыли, что и другие кометы являются источниками рентгеновского излучения.
Наблюдения в 2001г, проведенные с помощью высоко-дисперсионного спектрометра телескопа Subara, позволили астрономам впервые измерить температуру заледенелого аммиака в ядре кометы. Значение температуры в 28 + 2 градуса по Кельвину позволяет предположить, что комета LINEAR (C/1999 S4) сформировалась между орбитами Сатурна и Урана. Это означает, что теперь астрономы могут не только определять условия, в которых формируются кометы, но и находить место их возникновения. С помощью спектрального анализа в головах и хвостах комет были обнаружены органические молекулы и частицы: атомарный и молекулярный углерод, гибрид углерода, окись углерода, сульфид углерода, цианистый метил; неорганические составляющие: водород, кислород, натрий, кальций, хром, кобальт, марганец, железо, никель, медь, ванадий. Наблюдаемые в кометах молекулы и атомы, в большинстве случаев, являются «обломками» более сложных родительских молекул и молекулярных комплексов. Природа происхождения родительских молекул в кометных ядрах до сих пор не разгадана. Пока только ясно, что это очень сложные молекулы и соединения типа аминокислот! Некоторые исследователи считают, что такой химический состав может служить катализатором возникновения жизни или начальным условием ее зарождения при попадании этих сложных соединений в атмосферы или на поверхности планет с достаточно устойчивыми и благоприятными условиями.

Кометы – небольшие небесные тела, вращающиеся вокруг Солнца: описание и характеристика с фото, 10 интересных фактов о кометах, список объектов, названия.

В прошлом люди смотрели на прибытие комет с ужасом и боязнью, так как считали, что это предзнаменование смерти, катастроф или божьей кары. Китайские ученые веками собирали данные, отслеживая периодичность прибытия объектов и их траекторию. Эти летописи стали ценными ресурсами для современных астрономов.

Сегодня мы знаем, что кометы выступают остаточным материалом и малыми телами от формирования Солнечной системы 4.6 млрд. лет назад. Они представлены льдом, на котором находится темная корочка органического материала. Из-за этого получили прозвище «грязные снежки». Это ценные объекты для изучения ранней системы. Также они могли стать источником воды и органических соединений – необходимые жизненные компоненты.

В 1951 году Джерард Койпер предположил, что за чертой орбитального пути Нептуна скрывается дискообразный пояс с популяцией темных комет. Эти ледяные объекты периодически выталкиваются на орбиты и становятся короткопериодическими кометами. Тратят на орбиту меньше 200 лет. Сложнее наблюдать за кометами с длинными периодами, длительность орбитального пути которых превышает два века. Такие объекты проживают на территории облака Оорта (на удаленности в 100000 а.е.). На один облет могут потратить до 30 млн. лет.

В каждой комете есть замороженная часть – ядро, которое в протяжности не превышает нескольких километров. Состоит из ледяных осколков, замерзших газов и пылевых частиц. С приближением к Солнцу комета нагревается и формирует кому. Нагрев приводит к тому, что лед сублимируется в газ, поэтому кома расширяется. Иногда она способна охватывать сотни тысяч км. Солнечный ветер и давление могут устранять пыль и газ комы, что приводит к длинному и яркому хвосту. Обычно их два – пылевой и газовый. Ниже представлен список самых известных комет Солнечной системы. Перейдите по ссылке, чтобы изучить описание, характеристику и фото малых тел.

Название Открыта Первооткрыватель Большая полуось Период обращения
21 сентября 2012 года Виталий Невский, Артём Олегович Новичонок, Обсерватория ISON-Кисловодск ? ?
1786 года Пьер Мешен 2.22 а. е. 3,3 г
24 марта 1993 года Юджин и Каролина Шумейкеры, Дэвид Леви 6.86 а. е. 17,99 г
3 апреля 1867 года Эрнст Темпель 3.13 а. е. 5,52 г
28 декабря 1904 года А. Борелли 3.61 а. е. 6,85 г
23 июля 1995 А. Хейл, Т. Бопп 185 а. е. 2534 г
6 января 1978 Пауль Вильд 3.45 а. е. 6,42 г
20 сентября 1969 года Чурюмов, Герасименко 3.51 а. е. 6,568 г
3 января 2013 года Роберт Макнот, обсерватория Сайдинг-Спринг ? 400000 г
20 декабря 1900 года Мишель Джакобини, Эрнст Циннер 3.527 а. е. 6,623 г
5 апреля 1861 года А.Е. Тэтчер 55,6 а. е. 415,0 г
16 июля 1862 года Льюис Свифт, Туттль, Хорас Парнелл 26.316943 а. е. 135,0 г
19 декабря 1865 года Эрнст Темпель и Хорас Туттль 10.337486 а. е. 33,2г
1758 год Наблюдалась в глубокой древности; 2,66795 млрд км 75,3 г
31 октября 2013 года Обсерватория Catalina Sky Survey ? ?
6 июня 2011 года Телескоп Pan-STARRS ? ?

Большая часть комет движется на безопасной отдаленности от Солнца (комета Галлея не подходит ближе 89 млн. км). Но некоторые врезаются прямо в звезду или так сближаются, что испаряются.

Наименование комет

Название кометы может быть сложным. Чаще всего их называют в честь первооткрывателей – человек или космический корабль. Это правило появилось только в 20-м веке. К примеру, комета Шумейкера-Леви 9 названа в честь Юджина и Кэролин Шумейкер и Дэвида Леви. Обязательно прочитайте интересные факты о кометах и информацию, которую нужно знать.

Кометы: 10 вещей, о которых нужно знать

  • Если бы наша звезда Солнце по размеру сопоставлялась с дверью, то Земля напоминала монетку, карликовый Плутон – булавочная головка, а крупнейшая комета пояса Койпера (100 км в ширину) занимала бы диаметр пылинки;
  • Короткопериодические кометы (тратят на орбитальный пролет меньше 200 лет) проживают на ледяной территории пояса Койпера за орбитой Нептуна (30-55 а.е.). При максимальной удаленности комета Галлея расположена в 5.3 млрд. км от Солнца. Долгопериодические кометы (длинные или непредсказуемые орбиты) приближаются из облака Оорта (100 а.е. от Солнца);
  • Один день на комете Галлея длится 2.2-7.4 дней (один осевой оборот). На выполнение одного оборота вокруг Солнца тратит 76 лет;
  • Кометы представляют собою космические снежки с замороженными газами, пылью и камнями;
  • С приближением к Солнцу комета нагревается, создавая атмосферу (кома), способную охватывать в диаметре на сотни тысяч км;
  • У комет нет колец;
  • У комет нет спутников;
  • К кометам отправляли несколько миссий, а Stardust-NExT и Deep Impact EPOXI удалось раздобыть образцы;
  • Кометы не способны поддерживать жизнь, но полагают, что выступают ее источником. В своем составе могут транспортировать воду и органические соединения, которые, возможно, оказались на Земле при столкновении;
  • Комета Галлея отображена в гобелене Байе 1066 года, где рассказывается о падении короля Гарольда от руки Уильяма Завоевателя;