Факты исторического развития компьютерной техники. Реферат по информатике: "История развития компьютерной техники". · Производительность: сотни тысяч - миллионы операций в секунду

  • 5. История развития компьютерной техники и информационных технологий: основные поколения эвм, их отличительные особенности.
  • 6. Персоналии, повлиявшие на становление и развитие компьютерных систем и информационных технологий.
  • 7. Компьютер, его основные функции и назначение.
  • 8. Алгоритм, виды алгоритмов. Алгоритмизация поиска правовой информации.
  • 9. Что такое архитектура и структура компьютера. Опишите принцип «открытой архитектуры».
  • 10. Единицы измерения информации в компьютерных системах: двоичная система исчисления, биты и байты. Методы представления информации.
  • 11. Функциональная схема компьютера. Основные устройства компьютера, их назначение и взаимосвязь.
  • 12. Виды и назначение устройств ввода и вывода информации.
  • 13. Виды и назначение периферийных устройств персонального компьютера.
  • 14. Память компьютера – типы, виды, назначение.
  • 15. Внешняя память компьютера. Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и т.Д.).
  • 16. Что такое bios и какова его роль в первоначальной загрузке компьютера? Каково назначение контроллера и адаптера.
  • 17. Что такое порты устройств. Опишите основные виды портов задней панели системного блока.
  • 18. Монитор: типологии и основные характеристики компьютерных дисплеев.
  • 20. Аппаратное обеспечение работы в компьютерной сети: основные устройства.
  • 21. Опишите технологию «клиент-сервер». Приведите принципы многопользовательской работы с программным обеспечением.
  • 22. Создание программного обеспечения для эвм.
  • 23. Программное обеспечение компьютера, его классификация и назначение.
  • 24. Системное программное обеспечение. История развития. Семейство операционных систем Windows.
  • 25. Основные программные составляющие ос Windows.
  • 27. Понятие «прикладной программы». Основной пакет прикладных программ персонального компьютера.
  • 28. Текстовые и графические редакторы. Разновидности, сферы использования.
  • 29. Архивирование информации. Архиваторы.
  • 30. Топология и разновидности компьютерных сетей. Локальные и глобальные сети.
  • 31. Чтотакое World Wide Web (www). Понятие гипертекста. Документы Internet.
  • 32. Обеспечение стабильной и безопасной работы средствами ос Windows. Права пользователя (пользовательская среда) и администрирование компьютерной системы.
  • 33. Компьютерные вирусы – типы и виды. Методы распространения вирусов. Основные виды профилактики компьютера. Основные пакеты антивирусных программ. Классификация программ-антивирусов.
  • 34. Основные закономерности создания и функционирования информационных процессов в правовой сфере.
  • 36. Государственная политика в области информатизации.
  • 37. Проанализируйте концепцию правовой информатизации России
  • 38. Охарактеризуйте президентскую программу правовой информатизации органов гос. Власти
  • 39. Система информационного законодательства
  • 39. Система информационного законодательства.
  • 41. Основные спс в России.
  • 43. Методы и средства поиска правовой информации в спс «Гарант».
  • 44. Что такое электронная подпись? Ее назначение и использование.
  • 45. Понятие и цели защиты информации.
  • 46. Правовая защита информации.
  • 47. Организационно-технические меры предупреждения компьютерных преступлений.
  • 49. Специальные способы защиты от компьютерных преступлений.
  • 49. Специальные способы защиты от компьютерных преступлений.
  • 50. Правовые ресурсы Интернета. Методы и средства поиска правовой информации.
  • 5. История развития компьютерной техники и информационных технологий: основные поколения эвм, их отличительные особенности.

    Основной инструмент компьютеризации - ЭВМ (или компьютер). Человечество проделало долгий путь, прежде чем достигло современного состояния средств вычислительной техники.

    Основными этапами развития вычислительной техники являются:

    I. Ручной - с 50-го тысячелетия до н. э.;

    II. Механический - с середины XVII века;

    III. Электромеханический - с девяностых годов XIX века;

    IV. Электронный - с сороковых годов XX века.

    I. Ручной период автоматизации вычислений начался на заре человеческой цивилизации. Он базировался на использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности. Аналогом абака на Руси являются дошедшие до наших дней счеты.

    В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода автоматизации.

    II. Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. Вот наиболее значимые результаты:

      1623 г. - немецкий ученый В.Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения четырех арифметических операций

      1642 г. - Б.Паскаль построил восьмиразрядную действующую модель счетной суммирующей машины.

      из 50 таких машин

      1673 г. - немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции.

      1881 г. - организация серийного производства арифмометров.

    Английский математик Чарльз Бэббидж создал калькулятор, способный производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа - аналитическая машина, предназначавшаяся для вычисления любого алгоритма, но проект не был реализован.

    Одновременно с английским ученым работала леди Ада Лавлейс

    Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

    III. Электромеханический этап развития ВТ

    1887 г. - создание Г.Холлеритом в США первого счетно-аналитического комплекса

    Одно из наиболее известных его применений - обработка результатов переписи населения в нескольких странах, в том числе и в России. В дальнейшем фирма Холлерита стала одной из четырех фирм, положивших начало известной корпорации IBM.

    Начало - 30-е годы XX века - разработка счетноаналитических комплексов. На базе таких

    комплексов создаются вычислительные центры.

    1930 г. - В.Буш разрабатывает дифференциальный анализатор, использованный в дальнейшем в военных целях.

    1937 г. - Дж. Атанасов, К.Берри создают электронную машину ABC.

    1944 г. - Г.Айкен разрабатывает и создает управляемую вычислительную машину MARK-1. В дальнейшем было реализовано еще несколько моделей.

    1957 г. - последний крупнейший проект релейной вычислительной техники - в СССР создана РВМ-I, которая эксплуатировалась до 1965 г.

    IV. Электронный этап, начало которого связывают с созданием в США в конце 1945 г. электронной вычислительной машины ENIAC.

    V. ЭВМ пятого поколения должны удовлетворять следующим качественно новым функциональным требованиям:

      обеспечивать простоту применения ЭВМ; диалоговой обработки информации с использованием естественных языков, возможности обучаемости. (интеллектуализация ЭВМ);

      усовершенствовать инструментальные средства разработчиков;

      улучшить основные характеристики и эксплуатационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.

    ПОКОЛЕНИЯ ЭВМ.
    • 1623г. Первая "считающая машина", созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами.
    • 1644г. "Вычислитель" Блеза Паскаля - первая по настоящему популярная считающая машина, производившая арифметические действия над 5-значными числами.
    • 1668г. Вычислитель сера Сэмюэля Морланда, предназначавшийся для финансовых операций.
    • 1674г. Вильгельм Годфрид фон Лейбниц сконструировал механическую счётную

    машину, которая умела производить не только операции сложения и вычитания, но и умножения!

    • 1820г. Первый калькулятор - "Арифмометр" Шарля де Кольмара. Продержалось на рынке (с некоторыми усовершенствованиями) целых 90 лет!
    • 1834г. Знаменитая "Аналитическая машина" Чарльза Бэббиджа - первый программируемый компьютер, использовавший примитивные программы на перфокартах.
    • 1871г. Бэббидж создал прототип аналитического устройства компьютера и печатающее устройство - принтер.
    • 1886г. Дорр Фелт создал Comptometer - первое устройство с клавишным вводом данных.
    • 1890г. В США произведена перепись населения - впервые в этом участвовала "считающая машина", созданная Германом Холлритом.
    • 1935г. Корпорация IBM (International Business Machines) начала выпуск массовых вычислителей IBM-601.
    • 1937г. Математик Алан Тюринг создал "математическую модель" компьютера, получившую название "Машина Тюринга".
    • 1938г. Кондрад Цузе, друг и коллега знаменитого Вернера фон Брауна, создал в Берлине один из первых компьютеров - V1.
    • 1943г. Говард Эйкен создает "ASCC Mark I" - машину, считающуюся дедушкой современных компьютеров. Её вес составлял более 7 тонн и состоял из 750 000 частей. Машина применялась в военных целях - для расчёта артиллерийских таблиц.
    • 1945г. Джон фон Нейман разработал теоретическую модель устройства компьютера - первое в мире описание компьютера, использовавшего загружаемые извне программы. В этом же году Мочли и Эккерт создали ENIAC - самый грандиозный и мощный ламповый компьютер той эпохи. Компьютер весит более 70 тон и содержит в себе почти 18 тысяч электронных ламп. Рабочая частота компьютера не превышает 100КГц (несколько сот операций в секунду).
    • 1956г. В Массачусетском технологическом институте создан первый компьютер на транзисторной основе. В этом же году IBM создала первый накопитель информации - прототип винчестера - жёсткий диск КАМАС 305.
    • 1958-1959г.Д. Килби и Р. Нойс создали уникальную цепь логических элементов на

    поверхности кремниевого кристалла, соединённого алюминиевыми контактами -

    первый прототип микропроцессора, интегральную микросхему.

    • 1960г. АТ разработали первый модем.
    • 1963г. Дуглас Энгельбарт получил патент на изобретённый им манипулятор - "мышь".
    • 1968г. Основание фирмы Intel Робертом Нойсем и Гордоном Мурем.
    • 1969г. Intel представляет первую микросхему оперативной памяти объёмом 1 Кб. В этом же году фирма Xerox создаёт технологию лазерного копирования изображений, которая через много лет ляжет в основу технологии печати лазерных принтеров. Первые "ксероксы".
    • 1971г. ПО заказу японского производителя микрокалькуляторов Busicom команда разработчиков Intel под руководством Теда Хоффа создаёт первый 4-разрядный микропроцессор Intel-4004. Скорость процессора - 60 тысяч операций в секунду. В этом же году команда и исследователей лаборатории IBM в Сан-Хосе создает первый 8-дюймовый "флоппи-диск".
    • 1972г. Новый микропроцессор от Intel - 8-разрядный Intel-8008. Xerox создаёт первый микрокомпьютер Dynabook, размером чуть больше записной книжки.
    • 1973г. В научно-исследовательском центре Xerox создан прототип первого персонального компьютера. Первый герой, появившийся на экране, - Коржик, персонаж детского телесериала "Улица Сезам". В этом же году Scelbi Computer Consulting Company выпускает на рынок первый готовый персональный компьютер, укомплектованный процессором Intel-8008 и с 1 Кб оперативной памяти. В этом же году IBM представляет жёсткий диск IBM 3340. Ёмкость диска составляла 16 Кб, он содержал 30 магнитных цилиндров по 30 дорожек в каждом. Из-за этого и был назван "винчестером" (30/30" - марка знаменитой винтовки). И в этом же году Боб Мэткэлф изобретает систему связи компьютеров, получившую название Ethernet.
    • 1974г. Новый процессор от Intel - 8-разрядный Intel-8080. Скорость 640 тысяч операций в секунду. В скором времени на рынке появляется недорогой компьютер Altair на основе этого процессора, работающий под управлением операционной системы CP/M. В этом же году первый процессор выпускает главный конкурент Intel в 70-х годах - фирма Zilog.
    • 1975г. IBM выпускает первый лэптоп. Первой музыкальной композицией, воспроизведённой с помощью компьютера, стала мелодия песни The Beatles "Fool On The Hill".
    • 1976г. Фирма Advanced Micro Devices (AMD) получает право на копирование инструкций и микрокода процессоров Intel. Начало "войны процессоров". В этом же году Стив Возняк и Стив Джобс собирают в собственной гаражной мастерской компьютер серии Apple. А 1 апреля того же года на свет появляется компания Apple Computer. Компьютер Apple I поступает в широкую продажу с весьма сакраментальной цифрой на ценнике - 666. 66$.
    • 1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который
    • 1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который снабжён оперативной памятью в 4 Кб, постоянной памятью 16 Кб, клавиатурой и дисплеем. Цена за всё удовольствие - 1300$. Apple II обзаводится модной добавкой - дисководом флоппи-дисков.
    • 1978г. Intel представляет новый микропроцессор - 16 разрядный Intel-8086, работающий с частотой 4,77 МГц (330 тысяч операций в секунду). Основана компания Hayes - будущий лидер в производстве модемов.commodore выпустила на рынок первые модели матричных принтеров.
    • 1979г. Появление процессора Intel-8088, а также первых видеоигр и компьютерных приставок для них. Японская фирма NEC выпускает первый микропроцессор в этой стране. Hayes выпускает первый модем со скоростью 300 бод, предназначенный для нового компьютера Apple.
    • 1980г. Компьютер Atari становится самым популярным компьютером года. Seagate Technologies представляет первый винчестер для персональных компьютеров - жёсткий диск диаметров 5. 25 дюймов.
    • 1981г. Появляется компьютер Apple III. Intel представляет первый сопроцессор. Основана фирма Creative Technology (Сингапур) - создатель первой звуковой карты. Появляется в продаже первый массовый жёсткий диск ёмкостью 5 Мб и стоимостью 1700$.
    • 1982г. На рынке появляется новая модель от IBM - знаменитая IBM PC AT - и первые клоны IBM PC. IBM представляет процессор 16-разрядный 80286. Рабочая частота 6 МГц. (1,5 млн. операций в секунду). Hercules представляет первую чёрно-белую видеокарту - Hercules Graphics Adapter (HGA).
    • 1983г.commodore выпускает первый портативный компьютер с цветным дисплеем (5 цветов). Вес компьютера 10кг, цена 1600$. IBM представляет компьютер IBM PC XT, укомплектованный 10 Мб жёстким диском, дисководом на 360 Кб и 128 (позднее 768) Кб оперативной памяти. Цена компьютера составляла 5000$. Выпущен миллионный компьютер Apple II. Появляются первые модули памяти SIMM. Philips и Sony представляют миру технологию CD-ROM.
    • 1984г. Apple выпускает модем на 1200 бод. Hewlett-Packard выпускает первый лазерный принтер серии LaserJet с разрешением до 300 dpi. Philips выпускает первый дисковод CD-ROM. IBM представляет первые мониторы и видеоадаптеры EGA (16 цветов, разрешение - 630х350 точек на дюйм), а также профессиональные 14-дюймовые мониторы, поддерживающие 256 цветов и разрешение в 640х480 точек.
    • 1985г. Новый процессор от Intel - 32 разрядный 80386DX (со встроенным сопроцессором). Рабочая частота 16 МГц, скорость около 5 млн. операций в секунду. Первый модем от U. S. Robotics - Courier 2400 бод.
    • 1986г. На компьютере Amiga демонстрируется первый анимационный ролик со звуковыми эффектами. Рождение технологии мультимедиа. Рождение стандарта SCSI (Small Computer System Interface).
    • 1987г. Intel представляет новый вариант процессора 80386DX с рабочей частотой 20 МГц. Шведским национальным институтом контроля и измерений утверждается первый стандарт допустимых значений излучения мониторов. U. S. Robotics представляет модем Courier HST 9600
    • 1988г.compaq выпускает первый компьютер с оперативной памятью 640 Кб - стандартная память для всех последующих поколений DOS. Hewlett-Packard выпускает первый струйный принтер серии DeskJet. Стив Джобс и основанная им компания NexT выпускает первую рабочую станцию, оснащённую новым процессором Motorola, фантастическим для того времени объёмом памяти (8 Мб), 17-дюймовым монитором и жёстким диском на 256 Мб. Цена компьютера - 6500$.
    • 1989г. Creative Labs представляет Sound Blaster 1. 0, 8-битную монофоническую звуковую карту. Рождение стандарта SuperVGA (разрешение 800х600 точек с поддержкой 16 тысяч цветов).
    • 1990г. Рождение сети Интернет. Intel представляет новый процессор - 32-разрядный 80486SX. Скорость 27 миллионов операций в секунду. IBM представляет новый стандарт видеоплат - XGA - в качестве замены традиционному VGA (разрешение 1024х768 точек с поддержкой 65 тысяч цветов).
    • 1991г. Apple представляет первый монохромный ручной сканер. AMD представляет усовершенствованные "клоны" процессоров Intel - 386DX с тактовой частотой 40 МГц и 486SX с частотой 20 МГц. Первая стерео музыкальная карта - 8-битный Sound Blaster Pro.
    • 1992г. NEC выпускает первый привод CD-ROM с удвоенной скорость (2х).
    • 1993г. Intel представляет новый стандарт шины и слота для подключения дополнительных плат - PCI. Первый процессор нового поколения процессоров Intel - 32-разрядный Pentium. Рабочая частота от 60 МГ, быстродействие - от 100 млн. операций в секунду. Microsoft и Intel совместно с крупнейшими производителями ПК вырабатывают технологию Plug&Play (включи и работай), допускающую автоматическое распознавание компьютером новых устройств, а также их конфигурацию.
    • 1994г. Iomega представляет диски и дисководы ZIP и JAZ - альтернативу

    существующим дискетам 1. 44 Мб. US Robotics выпускает первый модем со скоростью 28800 бод.

    • 1995г. Анонсирован стандарт новых носителей на лазерных дисках - DVD. AMD выпускает последний процессор поколения 486 - AMD 486DX-120. Intel представляет процессор Pentium Pro, предназначенный для мощных рабочих станций. Компания 3dfx выпускает набор микросхем Voodoo, который лёг в основу первых ускорителей трёхмерной графики для домашних ПК. Первые очки и шлемы "виртуальной реальности" для домашних ПК.
    • 1996г. Рождение шины USB. Intel выпускает процессор Pentium MMX с поддержкой новых инструкций для работы с мультимедиа. Начало производства массовых жидкокристаллических мониторов для домашних ПК.
    • 1997г. Появление процессоров Pentium II, и альтернативных процессоров AMD K6. Первые приводы DVD. Выпуск первых звуковых плат формата PCI. Новый графический порт AGP.
    • 1998г. Apple выпускает новый компьютер iMac, отличающийся не только своей мощью, но и потрясающим дизайном. Выпуск процессоров Celeron с урезанной кэш-памятью второго уровня. "Трёхмерная революция": на рынке появляется десяток новых моделей трёхмерных ускорителей, интегрированных в обычные видеокарты. В течение года прекращён выпуск видеокарт без 3D-ускорителей.
    • 1999г. Выпуск новых процессоров Pentium III.
    • 2000-2003 гг. Жёсткая конкурентная борьба между Intel и AMD, приведшая к созданию процессоров с ужасающей скоростью 3200 МГц. Это привело и к росту оперативной памяти, объёму жёстких дисков, видеокарт и т.д.

    Боьшинство людей, по-видимому, считают, что термины “вычислительная машина” и “вычислительная техника" синонимами и связывают их с физическим оборудованием, как, например, микропроцессором, дисплеем, дисками, принтерами и другими истройствами, привлекающими внимание людей, когда человек видит компьютер. Хотя эти устройства и важны, всё-таки они составляют только “верхушку айсберга”. На начальном этапе использованаия современного компьютера мы имеем дело не с самим компьютером, а с совокупностью правил, называемых языками программироваания, на которых указываются действия, которые должен выполнять компьютер. Важное значение языка программирования подчёркивается тем фактом, что сама вычислительная машина может рассматриваться как аппаратный интерпретатор какого-нибудь конкретного языка, который называется машинным языком. Для обеспечения эффективной работы машины разработаны машинные языки, использование которых представляет известные трудностидля человека. Большинство пользователей не чувствуют этих неудобств благодаря наличию одного или нескольких языков, созданных для улучшения связи человека с машиной. Гибкость вычислительной машины проявляется в том, что она может исполнять программы-трансляторы (в общем случае онм называются компиляторами или интерпретаторами) для преобразования программ с языков, ориентированных на пользователей, в программы на машинном языке. (В свою очередь даже сами программы, игры, системные оболочки являются ни чем иным, как довольно простая программа-транслятор, которая по мере работы, или игры обращается при помощи своих команд к “компьютерным внутренностям и наружностям”, транслиуя свои команды в машинные языки. И всё это происходит в реальном времени.)

    Рапанович Иван

    Исследовательская работа

    Скачать:

    Предварительный просмотр:

    Муниципальное общеобразовательное учреждение Ореховская средняя общеобразовательная школа

    Школьная научно – практическая конференция школьников «Шаг в будущее »

    Выполнил: Рапанович Иван

    Ученик 6 класса

    Руководитель: Демидова

    Надежда Александровна

    Орехово 2009 год

    ВВЕДЕНИЕ

    Счётно - решающие средства до появления ЭВМ

    Поколение первое. Компьютеры на электронных лампах

    Поколение второе. Транзисторные компьютеры

    Поколение третье. Интегральные схемы

    ПоКОЛЕНИЕ ЧЕТВЁРТОЕ. бОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

    ЗАКЛЮЧЕНИЕ

    СПИСОК ЛИТЕРАТУРЫ

    Введение.

    Необходимость производить вычисления существовала всегда. Люди в стремлении усовершенствовать процесс вычисления изобретали всевозможные приспособления. Об этом свидетельствуют и греческий абак,и русские щоты,и японский серобян, и ещё множество разнообразных устройств. В 17веке были созданы первые механические счётные машины, в 19веке они получили широкое распространение.

    Самое удивительное устройство, названное сначала электронно – вычислительной машиной (ЭВМ), а затем компьютером, подарил человеку 20век.

    Идея классифицировать машины по поколениям вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появление новых возможностей, расширение областей применения и характера использования.

    Цель данной работы заключается : в исследовании истории развития компьютерной техники

    Задачи :

    выяснить как совершенствовались компьютеры по мере развития;

    выяснить, что понимается под «поколением ЭВМ»;

    сделать вывод о проделанной работе;

    сформировать позитивный интерес к информатике

    Счётно - решающие средства до появления ЭВМ.

    История вычислений уходит своими корнями в глубь веков так же, как и история человечества. Накопление запасов, делёж добычи, обмен – все эти действия связаны с вычислениями. Для подсчётов люди использовали пальцы, камешки, палочки узелки и т.д.

    Одним из первых устройств (5 – 4 века до н.э.), облегчавших вычисления, можно считать специальное приспособление, названное впоследствии абаком. Первоначально это была доска, посыпанная тонким слоем мелкого песка или порошка из голубой глины. На ней заострённой палочкой можно было писать буквы и цифры. Впоследствии абак был усовершенствован и вычисления на нём уже проводились путём перемещения костей и камешков в продольных углублениях, а сами доски начали изготавливать из бронзы, камня, слоновой кости и пр. Со временем эти доски стали расчерчиваться на несколько полос и колонок. У японцев этот прибор назывался «серобян», у китайцев – «суан - пан».

    В Древней Руси при счёте применялось устройство, похожее на абак, и называлось оно «русский щот». В 17 веке этот прибор уже имел вид русских счётов, которые можно встретить и в наши дни.

    В начале 17 столетия молодым французским математиком и физиком Блезом Паскалем была изобретена первая в мире счётная машина, названная Паскалиной.

    Которая выполняла сложение и вычитание.

    В 1970 – 1980 годах немецкий математик Готфрид Лейбниц сконструировал счётную машину, которая выполняла все четыре арифметических действия.

    В 1978 году русский учёный П. Чебышев сконструировал счётную машину, выполнявшую сложение и вычитание многозначных чисел.

    В 1984 году петербургский инженер Однер сконструировал арифмометр, который выполнял все четыре арифметических действия.

    В 30 – е столетия в нашей стране был разработан более совершенный арифмометр «Феликс».

    Важным событием 20 столетия было изобретение английского математика Чарлза Беббиджа, который вошел в историю как изобретатель первой вычислительной машины – прообраза современного компьютера. В 1812 г. Он начал работать над так называемой «разностной» машиной. К 1822 г. Он построил небольшую действующую модель и

    рассчитал на ней таблицу квадратов. В 1833 году приступил к разработке аналитической машины. Она должна была отличаться от разностной машины большей скоростью и более простой конструкцией. Машину предполагалось приводить в действие силой пара.

    К сожалению, из-за недостаточного развития технологии проект Беббиджа не был реализован.

    Необходимость автоматизировать вычисления при переписи населения в США подтолкнула Генриха Холлерита к созданию в 1888 году устройства, названного табулятором, в котором информация, нанесённая на перфокарты, расшифровывалась с помощью электрического тока. В 1924 году Холлерит основал фирму IBM для серийного выпуска табуляторов.

    Поколение первое.
    Компьютеры на электронных лампах.

    Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры.

    Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

    Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штекера с нужным гнездом.

    Примерами машин I-го поколения могут служить MARK 1, ENIAC EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

    Поколение второе.
    Транзисторные компьютеры.

    1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.

    Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник (!!) и стоимостью всего 20 тыс. долларов (!!) .

    Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

    И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а, магнитную ленту впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например «БЭСМ-6»).

    Поколение третье.
    Интегральные схемы.

    Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм 2 .

    Первые и нтегральные с хемы (ИС ) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

    Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

    Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

    Поколение четвертое.
    Большие интегральные схемы.

    Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние – интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать?

    Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см 2 ). Началась эпоха микрокомпьютеров.

    Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

    Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

    Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel® . Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

    Сравнение разных поколений компьютеров.

    Во время развития компьютеров четко обозначилась тенденция к уменьшению размеров и увеличению производительности. Чем более совершенствовалась элементная база компьютеров, тем меньше и быстрее они становились. Это можно показать на примере следуюшего сравнения и таблицы:

    • ENIAC был размером с целый дом и весил 30 т.
    • На его создание потратили 0,5 млн. долларов.
    • Он потреблял 200 кВт энергии.
    • Лампа выходила из строя каждые 7-8 минут.
    • Он мог сложить два числа за 3 мск.

    Очень большие
    (ENIAC, UNIVAC, EDSAC)

    Значительно меньшие

    Миникомпьютеры

    Микрокомпьютеры

    Быстротдействие

    1 (условно)

    1 000

    100 000

    Носитель информации

    Перфорированная лента

    Магнитный диск, м. лента

    Диск

    Гибкий диск

    ЗАКЛЮЧЕНИЕ

    Какими должны быть компьютеры пятого поколения?

    Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идёт также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

    В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний.

    Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок, так называемый интеллектуальный интерфейс. Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

    В настоящее время очень многие области деятельности человека связаны с применением компьютеров. Почему же эти электронные машины так плотно внедряются в нашу жизнь. Все довольно тривиально. Они выполняют рутинную расчетную и оформительскую работу, освобождая наш мозг для более необходимых и ответственных задач. В результате утомляемость резко снижается, и мы начинаем работать гораздо производительнее, нежели без применения компьютера.

    Возможности современных компьютеров поражают самое богатое воображение. Они способны параллельно выполнять несколько задач, сложность которых довольно велика. Поэтому некоторые производители задумываются над созданием искусственного интеллекта. Да и сейчас работа компьютера напоминает работу интеллектуального электронного помощника человека.

    Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.

    1642 г. - французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.

    1673 г. — Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.

    Первая половина XIX в. - английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу — это механическое устройство, программы для которого задаются посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).

    1941 г. — немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.

    1943 г. — в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 2-5 м и содержал 750 000 деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.

    1943 г. - в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.

    1945 г. - к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.

    1947 г. - Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

    1949 г. - английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.

    1951 г. - Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32-32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

    1952 г. - фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.

    После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода - вывода.

    1952 г. — фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).

    1956 г. - фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

    1956 г. - фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

    1957 г. — группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

    1960-е гг. — 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.

    1970-е гг. - 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.

    1974 г. - несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера — устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.

    1975 г. - появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.

    Конец 1975 г. — Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.

    Август 1981 г. — компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.

    1980-е гг. — 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.

    1990-е гг. — 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.

    2000-е гг. — 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.

    Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

    Основные этапы развития вычислительной техники

    Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

    • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
    • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
    • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
    • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

    Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

    Самые первые приспособления для счёта

    Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

    С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

    Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

    В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

    Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

    В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

    Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

    Первые механические счётные устройства

    В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

    Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

    В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

    В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

    Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

    Разработка первых аналогов компьютера

    В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

    В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

    Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

    Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

    В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

    Начало компьютерной эры

    Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

    Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

    Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

    В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

    В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

    Разработка архитектуры

    В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

    Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

    Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

    В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

    В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

    Транзисторы. Выпуск первых серийных компьютеров

    Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

    В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

    В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

    Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

    Появление интегральных микросхем

    В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

    В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

    В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

    В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

    В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

    Персональные компьютеры

    После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

    Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

    Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

    Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

    В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

    ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

    Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

    Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

    Классы вычислительной техники

    Существуют различные варианты классификации ЭВМ.

    Так, по назначению компьютеры делятся:

    • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
    • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
    • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

    По размерам и производительной мощности современная электронно-вычислительная техника делится:

    • на сверхбольшие (суперкомпьютеры);
    • большие компьютеры;
    • малые компьютеры;
    • сверхмалые (микрокомпьютеры).

    Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.